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ABSTRACT

Campbell and Fiske's (1959) multitrait-multimethod (MTMM) design is the most widely used paradigm for testing
construct validity, but it continues to be plagued by problems associated with definitions of terms, operationalizations
of their guidelines, and analytic procedures used to test them. Using five diverse MTMM data sets, we demonstrate,
compare and contrast, and evaluate five current analytic approaches: two manifest variable anproaches (Campbell
and Fiske's (1959) original guidelines and the ANOVA model) and three latent variables approaches (a taxonomy of
confirmatory factor analysis (CFA) models, the covariance component analysis (CCA) model, and the composite
direct product (CDP) model). Even though the five approaches use a common terminology -- convergent validity,
discriminant validity, and method effects -- there is a "fuzziness" about what these concepts mean an* how they are
operationalized in the different approaches. Based on our review and analysis we recommend a common terminology
and operationalization of terms based on CFA models, and recommend the use of four CFA models and the CDP

model along with the original Campbell-Fiske guidelines. The stronge st single model, however, appears to be the
CFA corrclated uniquencss model.
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Mulitrait-multimethod Data 1

Campbell and Fiske (1959) advocated the assessment of construct validity by measuring multiple traits (T1,
T2, ..., Tt) with multiple methods (M1, M2, ..., Mm). Traits refer to attributes such as abilities, attitudes, and
personality characteristics. In many applications, the multiple traits represent a multidimensional construct (e.g., self-
concept) in which there are likely to be moderate to large correlations among the different traits and it may be
rcasonable to predict a priori the pattern of relations among the different constructs. In some applications, however,
tse multiple traits are conceptually unrelated (e.g., attitudes towar s smoking and ¢ - ishment) so that it may
be difficult to predict the pattern of correlations among traits.. The term multiple metnou  was used very broadly by
Campbell and Fiske (also see Fiske, 1982) to refer to multiple tests, multiple methods of assessment, multiple raters,
or multiple occasions. The MTMM design is frequently used to study multiple battery data in which the same
measures are presented on multiple occasions to study stability, or across different raters to study rater agreement
(Browne, 1954; Cadeck, 1988; Marsh, 1989; Wothke & Browne, 1990). Whereas the analytic procedures for
evaluating MTMM data are appropriate for different types of multiple meas:ires, the substantive interpretations differ
depending on the nature of the multiple methods. It is also evident that the extent of suppc: * for the construct validity
of responses associated with any particular trait or niethod will depend in part on the other tr. its and methods that are
included in the design.

In evaluating multitrait-multimethod (MTMM) data it is typical to refer to convergent validity, discriminant
validity, and method effects (Campbell & Fiske, 1959, Marsh, 1988). Convergent validity refers to true score or
common factor trait variance. In the Campbell-Fiske approach it is inferred from agreement between measures of the
same trait assessed by different methods -- the convergent validities. Discriminant validity refers to the
distinctiveness of the different traits. In the Campbell-Fiske approach it is inferred by comparing correlations among
different traits to the reliabilities of the traits and to convergent validities. Method effects refers to the influence of a
paiticular method and is typically viewed as an undesirable bias that inflates the correlations among the different
traits that are measured by the same method (but also see Campbell & O'Connell, 1982). In the Campbell-Fiske
approach it is inferred by comparing correlations among traits measured by the same method with correlations among
the same traits measured by different methods.

The Campbell-Fiske MTMM paradigm is, perhaps, the most widely employed construct validation design,
and their original guidelines remain the most frequently used approach for examining MTMM data. However,
important problems with their guidelines are well known (e.g., Althauser & Heberlein, 1970; Alwin, 1974; Campbell
& O'Connell, 1957; Marsh, 1988; 1989; Wothke, 1984, 1987) and have led to many alternative analytic approaches.
Kenny and Kashy (in press) noted that even after 30 years of widespead use, we still do not know how to analyze
adequately data resulting from the MTMM paradigm. Early attention was received by an ANOV A model nroposed
by Stanlev (1961; also sec Kavanagh, Mackinney & Wollins, 1971; Marsh, 1988; Marsh & Hocevar, 1983).
Subsequently, considerable attention was given to confirmatory factor analysis (CFA) approaches (Joreskog, 1974,
Widaman, 1985; Marsh, 1988; 1989). However, rescarchers have pointed to what appears to be an inherent iastability
in the general CFA model due, perhaps, to empirical underidentification, such that this model usually results in
improper sclutiors. Partly in response i this problem, rescarchers have demonstrated the use of different approaches
that are more likely to result in proper solutons: a different CFA model called the correlated uniquencss model
(Marsh, 1988; 1989; also sce Kenny, 1976; Kenny & Kashy, in press; also sce Browne, 1980); a covariance
component analysis (CCA; Wothk *, 1984, 1987, also see Browne, 1989; Keuny & Kashy, in press); and the
cnmposite direct product model (CDP; Browne, 1984; 1989; also sce Cudeck, 1988; Bagozzi & Yi, 1990; Wothke &
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Browne, 1990). Whereas each of the approaches has potential strengths weaknesses, there has been insufficient
attention given to comparing the different analytic strategies.

The purpose of this study is to demonstrate, compare and contrast, and cvaluate five approaches to
evaluating MTMM data. Two of the approaches are based on relations among manifest variables; Campbell and
Fiske's (1959) original guidelines and an ANOV A model proposed by Stanley (1961). The remaining three
approaches are based on relations among latent variables -- a taxonomy of confirmatory factor analysis (CFA) models
(Widaman, 1985; Marsh, 1989), Wothke's (1984, 1987) covariance component analysis (CCA) model, and Browne's
(1984, 1989) composite direct product (CDP) model. It must be emphasized that the five approaches are not
equivalent in their operationalizations of the terms convergent validity, discriminant validity, and method effects.
Consequently, different approaches will sometimes result in incompatible interpretations. Also, each approach has
different strengths and weaknesses that may be idiosyncratic to particular applications. In this respect, it is important
to evaluate the different approaches using & wide variety of MTMM studies.

Surprisingly, no previously published research has compared results from the five approaches considered
here, or even the three latent variable approaches that are our primary emphasis. Furthermore, the correlated
uniqueness model, which we argue is the strongest model in the CFA taxonomy, has not been systematically
compared with either the CCA or the CDP approach. To remedy this situation, we apply all five approaches to a set
of five MTMM studies specifically selected to represent a variety of different MTMM designs and outcomes. This
breadth of application is important because most previous research has compared one or, in a very few cases, two, of
the latent variable approaches with the traditional Campbell-Fiske guidelines for a single set of data, Ours is
apparently the first to apply such wide variety of approachzs to such a diversity of MTMM studies. After briefly
describing the five MTMM matrices, we apply the manifest variable approaches, describe tue three latent variable
approaches, and compare results based on the latent variable approaches.

For purposes of the present investigation, we have chosen S MTMM matrices (sce Appendix 1) that
represent a variety of different MTMM designs and patterns of results. Because these matrices are based on
previously published data in which the methodological details are presented in greater detail, we offer only brief
summaries here.

Byme Data, Byme and Shavelson (1986; also sce Marsh, 1988; 1989; Marsh, Byrne & Shavelson, 1988)
examined the relations between three academic self-concept traits (Math, Verbal, and General School) measured by
three different instruments. The 9 scores representing all combinations of the 3 traits and 3 methods were based on
multi-item scales and the three instruments had strong psychometric properties. Consistent with theory and
considerable prior research, it was found that the Math and Verbal self-concepts were nearly uncomelated with each
other and were substantially correlated with School sclf-concept. Marsh (1989) noted that this "is an exemplary
MTMM study because of the clear support for the Campbell-Fiske guidelines, the large sainple size (817, after
deleting persons with missing data), the good psychometric properties of the measures, and the a priori knowledge of
the trait factor structurc” (p. 348). Also, the predicted lack of correlation between Math and Verbal self-concept
satisfies the Campbell and Fiske recommendation to include two traits "which are postulated to be independent of
each other” (p. 104). In the 3Tx3M design, apparently comparable traits were inferred frorn responses tc different
instruments completed by the same individuals.

Kelly and Fiske Data. This MTMM matrix is one of those originally considered by Campbell and Fiske
(1959). Kelly and Fiske (1951) examined relations among ratings of 124 first-year clinical psychology students by
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the students themselves, by the median response from a set of three otlier students, and by the pooled ratings of the
assessment staff, The multiple traits were "behaviors that can be observed directly on the surface” (Campbell &
Fiske, 1959). For purposes of illustration, Campbell and Fiske selected fiv= traits that best represented underlying
factors found in separate analyses of ratings by each group (assertive, cheer/ul, serious, unshakable poise, and broad
interests). Campbeil and Fiske (1959), noting a lack of support for their guidelines in most MTMM studies,
concluded that this ,»-ITMM matrix "is, we believe, typical of the best validity in personality trait ratings that
psychology has to offer at the present time." This matrix was also the basis of Joreskog's original (1974) presentation
of the CFA approach, although the general model that he proposed actually resulted in an improper solttion. Browne
(1984) demonstrated his CDP model with this matrix and claimed that it was superior to the CFA approach. Wothke
(1984, 1987) demonstrated his CDP model with this matrix, also claiming its superiority over the CFA approach.
However, the CFA correlated uniqueness model was not considered in either of these studies, so the claimed
super:ority of either the CCA or CDP approach over the CFA approach for this data may be premature. In the STx3M
design, apparently comparable traits were inferred from responses to different stimulus materials by different

indivi " -als who have different roles.

Ireland Data, Marsh and Ireland (1984, 1988) asked multiple teachers to evaluate 139 student essays
according to different components ot writing effectiveness. In this application, responses by three teachers constitute
the multiple methods of assessing 5 traits (mechanics, sentence structure, word usage, organization, content/ideas,
quality of style). Marsh and Ireland fouizd good support for agreement among different teachers (and between teacher
ratings and school based measures) for the total scores. Consistent with previous research, however, they found little
or no support for the ability of teachers to diffcrentiate among the multiple traits, This MTMM matrix, then,
represents a multiple battery design (the same stimulus material was used for multiple raters) in which there is
apparently good support for convergent validity, but not discriminant validity. Marsh (1989) also demonstrated the
CFA correlated uniqueness model with this data, arguing for its superiority to the general CFA model that resulted in
an improper solution. In the STx3M design, apparently comparable traits were inferred from responses to the same
stimulus materials by different individuals who have the same role.

Youth In Transition {YIT) Data, Data for this matrix come from the YIT study (Bachman, 1975) in which a
large, nationally representative sample of high school males were sampled in 10th, 11th, and 12th grades and one
year after graduation from high school. For this data, the multiple occasiciss are considered to be the different
racthods of assessment. Marsh and Bailey (1991) found strong support for convergent and discriminant validity, and
weak method (uccasion) effects for a large number of variables from this data. For present purposes we consider five
traits (self-esteem, political knowledge, honesty, job ambition, and anxiety) measured on three different occasions.
This MTMM maltrix, then, represents multiple battery data (same measures on different occasions) in which there is
good support for both convergent and discriminant validity. In the STx3M design, apparently comparable traits were
inferred from responses to the same stimulus materials by the same ind wviduals on different occasions.

Lawler data, Lawler (1969) considered ratings of three job performance traits {(quality of job performance,
ability to perfonn job, and effort put into the job). The multiple methods were self-ratings, ratings by supervisors, and
ralings by peers. This matrix, along with the one based on the Kelly and Fiske data, has apparently been the most
frequently reanalyzed MTMM matrix, but the results have not been clear-cut. There is moderate agreement between
peers and supervisors, but also substantial correlations among the different traits. Self-ratings of effort are moderately
correlated with those of peers and supervisors, but self-ratings on the other two lraii‘s\ are nearly uncorrelated with the
peer and supervisor ratings. This 3Tx3M matrix, then represents typically "messy‘t (l:ata. In the 3Tx3M design,

- t
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apparently comparable traits were inferred from responses to the same stimulus materials by different individuals
who have different roles.

In summary, we selected MTMM matrices that vary substantially in design and in terms of apparent support
for convergent validity, discriminant validity, and method effects.

The Campbetl and Fiske (1959) Approach

The MTMM matrix based on the Bymne data (Appendix 1) is used to illustrate the MTMM terminology that
is embodied in the Campbell-Fiske approach. There are three traits, School self-concept (T1), Verbal self-concept
(T2) and Math self-concept (T3), and three methods -- ths e different self-concept instruments (M1, M2, M3). The
MTMM matrix contains correlations among these M x T = 9 measures. The measured variables are typically ordered
in terms of traits within method (e.g., TIM1, T2M1, T3M1, TIM2, ... T3IM3). The MTMM matrix is divided inio
triangular submatrices of relations among measures assessed with the same method (monomethod), and square
submatrices of relations among ' ~easures assessed with different methods (heteromethod). Adopting the Campbeli and
Fiske terminology, there are four ty, - of coefficients: (a) monotrait-monomethod coefficients or reliability 2stimates,
the values in parentheses along the main diagonal of the MTMM matrix or 1.0s if no reliability estimates are available;
(b) heterotrait-monomethod (HTMM; different traits, same method) coefficients, the off-diagonal coefficients of the
triangular submatrices; () monotrait-heteromethod (MTHM; same traits, different method) coefficients or convergent
validities, the values in the diagonals of the square submatrices; and (d) heterotrait-heteromethod (HTHM; different
traits, different method.) coefficients, the off-diagonal coefficients of the square submatrices.

Campbell and Fiske (1959) proposed four guidelines for evaluating MTMM matrices and inferring support
or nonsupport for convergent and discriminant validity, although they actually suggested other possible guidelines.
The application of the guidelines is presented in detail for the Byrne data, whereas the application to the other
MTMM matrices (see Appendix 1) is summarized in Table I,

For purposes of explanation, manifest score are denoted x(Ti, Mp) where Ti is one of the multiple traits (Ti,
Tj, Tk...) and Mp is one of the multiple methods (Mp, Mg, Mr...). Let r(TiMp, TjMs) denote the correlation between
x(Ti, Mp) and x(Tj, Ms).

. lidity criteri

1) r (TiMp, TiMs) >> 0

The convergent validity coefficients should be statistically significant and sufficiently large to warrant further
examination of validity. Failure of this criterion sugpests that different measures are measuring difierent constructs,
implying a lack of validity for at lcast some of the measures, or that true trait varia.ace is small relative to the size of
method effects and measurement error. Although positive convergent validity coefficients may also reflect shared
method effects, satisfaction of this guideline is a logical prerequisite to the consideration of other guidelines. For the
Byme data all nine convergent validitics are statistically significant, varying between .54 and .87 (mean r = .70), thus
providing strong support for this guideline.

Discrimi lidi ideli

2) r (TiMp, TiMq) > r (TjMp, TiMq) and r (TiMp, TiMq) > r (TjMq, TiMp), p not equal p

The convergent validities should be higher than HTHM correlations. The failure of this criterion implies that
agreement on a particular trait is nct indepcndent of agreement on other traits, suggesting that agreement can be
explained by true trait correlations or shared method effects. For T=3 and M=3 this criterion requires each convergent
v\idity to be higher than the 4 HTHM cocfficients in the same row and column of the square submatrix. Because
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convergent validities {mean r = .70) are higher than the comparison correlations (mean r = .31) in all 36 of these
comparisons, there is good support for this guideline of discriminant validity for the Byme data.

3) r (TiMp, TiMq) > r (TiMp, TjMp) and r (TiMp, TiMq) > r (TiMq, TjMq)

The convergent validities should be higher than HTMM correlations. Violations of this criterion sugges!. that there are
true trait correlations and/or method effects. Particularly if HTMM correlations approach the reliability estimates
then there is evidence that the traits are not measuring different corstructs and/or a strong method effect. This
criterion requires each convergent validity to be higher than the 4 HTMM comparison coefficients in the same row
and column of the corresponding triangular submatrices. Because the convergent validities (mean r =70} are higher
than the comparison correlations (mean r = .35) for 33 of 36 comparisons, there is rcasonable support for this
criterion in the Byrne data. All three failures involve M3 where correlations among the traits (mean r = .44) are
higher than for M1 (.28) or M2 (.33).

4) r (TiMp, TiMq) > r (TkMp, TIMq) implies r (TiMr, TjMs) > r (TkMr, TiMs).

The pattem of correlations among traits should be similar for the same and different methods. Assuming that there
are significant correlations, satisfaction of this critcrion suggests true trait correlations that are independent of the
method of assessment whereas failure suggests that the observed correlations are differentially affected by method
effects. When the number of traits is smail this criterion is typically examined by inspection of the rank order of
correlations (e.g., Sullivan and Feldman, 1979), but Marsh (1982) correlated the correlations to obtain a more precise
index of similarity when the number of traits was large. The relative size of correlations within each method
correlated between .66 and .67 with the corrcsponding correlations within the other methods. All correlations
between Math and Verbal self-concepts are small {(msan r = .06) whereas school self-concept is significantly and
consistently correlated with both Math (mean r = .45) and Verbal (mean r = .42) self-concepts. These results,
particularly since they support a priori hypotheses about the patiern of correlations, provide: clear support for this
guideline in the Bymne data.

) r(TiMp, TiMp)/ (¢ (TiMp, TiMp) (TiMp, TiMp)] 12 << 1

Campbell and Fiske (1959) specifically stated that a clear violation of discriminant validity occurred "where within a
monomethod block, the heterotrait values are as high as the reliabilities” (p. 84) and that "the elevation of the
reliabilities aRbove the heterotrait-monomethod triangle is further evidence for discriminant validity” (p. 97). Althougt.
not formally included as one of their guidelines, it is clear that this was part of their strategy for evaluating MTMM
matrices. In retrospect, its exclusion from their "official” list of guidelines is unfortunate, because it would have
encouraged rescarchers 10 systematically evaluate the reliability of their measures, to focus more on the quality of
measurement of each trait-method unit, to evaluate the implicit assumption of equally reliable measures underlying
all the guidelines, and to include this as part of the MTMM matrix. We realize that this guideline cannot be evaluated
in most existing MTMM studies because reliability estimates typically are not reported, but have presented it as one
of the Campbell-Fiske guidelines to encourage its consideration in future research. For the Byme data the coefficient
alpha estimates of reliability (.79 to .95; mean = .89) are all substantial, and none of the disattenuated correlations
apyroaches 1.0, providing good support for this guideline.

Method effects

6) r (TiMp, TjMp) > r (TiMp, TjMq)

Campbell and Fiske (1959, p. 85) stated that "the presence of method variance is indicated by the difference in level
of correlation between parallel values of the monomethod block and the heteromethod block, assuming comparable
veliabilities among the tests.” Large differcnces imply substantial method effects and/or shared method effects.

-
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Althoug h not formally included as one of their gaidelines, Marsh (1988; also sce Millsap, 1990) noted that this was
an impurtant aspect of their approach and proposed its addition to the set of guidelines. In operationalizing this
criterion for the Byme data, for example, the mean HTMM correlation is .35 whereas the mean HTHM correlation is
.29, suggesting a small amount of method effect. The correlations among traits, however, are larger for M3 (meanr =
44), than for M2 (mean r =,33) and M1 (mean r = .28). This suggests modest amounts of method effect for M3, but
little or no method effects for M1 and M2.

Insert Table 1 About Here

‘The application of the Campbell-Fiske guidelines (except for guideline 5 that requires reliability estimates
that are typically unavaiiable) for the other four data sets is summarized in Table 1. The convergent validities are
consistently large in te YIT (mear r = .52) and Ireland (mean r = .62) data, but less so in the Kelly and Fiske (mean r
=.36) and Lawler (mean . = .28) uata sets. Guidelines 2 and 3 are satisfied for most comparisons for the YIT and for
the Kelly and Fiske data, but not for the Lawler or the Ireland data. The patterns of correlations among traits is
reasonably similar across methods in all 4 data sets. Method effects, based on the comparison of HTMM and HTHM
correlations, appear to be substantial for the Lawler and ireland data, but not for the Kelly and Fiske and the YIT
data. In summary, the Campbell-Fiske guidelines appear to be well satisfied for the Byrne, YIT, and, to a lesser
extent, for the Kelly-Fiske data. There is good support for only convergent validity for the Ireland data and even the
support for convergent validity is weak for the Lawler data.

The Campbell-Fiske guidelines continue to be widely used and are useful in many instances. Because of
their popularity, ease of application, intuitive appeal, heuristic value, and wide recognition, it is recommended that
these guidelines should be applied as an initial step in MTMM studies even though more sophisticated approaches
should also be used. If inferences based on the Campbell-Fiske guidelines do not agree with those based on other
analytic approaches, then the appropriateness of both approaches should be more fully examined. This requires
researchers to better understand the different approaches. The following issues represent important limitations to the
Campbell Fiske guidelines, some of which are addressed by other approaches.

The number of comparisons, For the 3Tx3M design, guidelines 2 and 3 requised a total of 72 comparisons
between convergent validities and other correlations. However, these comparisons are not tests of statistical
significance and appropriate significance tests would be difficult to devise for so many nonindependent comparisons.
Furthermore, the number of comparisons goes up geometrically with the number of traits and methods. For example,
3164 comparisons are required for a 12Tx4M design (Marsh, Barnes & Hocevar, 1985). The researcher must then
decide whether the proportion of failures is sufficiently low, whether mean difference between convergent validitics
and comparison coefficients is sufficiently large, or whether size and pattern of violations are sufficiently
unsystematic to warrant su-«xort of a criterion. This decision is somewhat arbitrary.

Correlated traits and discriminant validity, Support for discriminant validity should, apparently, be based on
the size of true trait correlations. If, for example, true trait correlations approach 1.0 or exceed some arbitrary value,
then the traits could be said to lack of discriminate validity. Campbell and Fiske distinguish between method
variance, true trait variance, and true trait covariance. Method variance associated with a particular method of
assessment is detrimental to discriminant validity in the Campbell-Fiske guidelines, but does not preclude it. True
trait variance, inferred from the correlation between different measures of the same trait that is independent of

method variance, is good but does not imply uiscriminant validity. True trait covariation, the true correlation between

Q
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different traits that is independent of method effects, will increase the likelihood of failures of guidelines 2 and 3.
However, criterion 4 specifically tests for true trait covariation and is interpreted as support for discriminant validity.
A complete Lack of true trait covariation or trait coirclations approaching the reliability of the measures makes
interpretation simple, but is unlikely, Hence, true trait correlations and their interpretation in relation io discriminent
validity is ambiguous within the Campbell-Fiske approach.

nferences based on observed correlations and errorful data, The validity of inferences based on the
Campbeli-Fiske guidelines depends on the behavior of the underlying constructs, but the Campbell-Fiske guidelines
are applied to correlations between observed measures, Campbell and F:ske noted that the applicati»n of their
guidelines implicitly assumes the measures to be equally reliable. If the reliabilities differ substantially, then
inferences based on the guidelines may be invalid. For example, correlations among traits assessed with a more
reliable meuiod may produce higher trait correlations than a less reliable method, and thus give the impression of
larger method effects. Other researchers have attempted to evaluate what assumptions about underlying ¢u. . acts are
required in order for inferences based on the guidelines to be valid (e.g., Althauser & Heberlein, 1970; Alwin, 1974;
Marsh, 1988; Sullivan and Feldman, 1979). There is, however, neither clear agreement about what conditions
invalidate the inferences nor practical solutions about how to evaluate these inferences.

Large method effects and shared method effects, Whereas the Campbell-Fiske guidelines were designed to
test for convergent and discriminant validity when method effects are likely, the existence of large method effects
and shared method effects may undermine interpretations of the guidelines. Thus, for example, large method effects
will lead to what appears to be a lack of discriminant validity (according to guidelines 2 and 3) even when the
underlying traits are distinct. High convergent validities may also reflect substantial shared method effects in addition
to, or instead of, true trait effecis that generalize across methods. If different method effects are negatively correlated,
a zero convergent validity could reflect the counter-balancing negative shared method effects and positive true trait
variance. Even the fifth criterion used to infer the size of method effects must be interpreted cautiously when there
are large shared method effects. In the extreme, if all the method effects are large and correlations between method
effects representing different methods approach 1.0, then application of the fifth criterion would imply a lack of
method effects. In this sense, inferences based on the Campbeli-Fiske guidelines should be interpreted as evidence
about the trait effects relative to the size of method effects. Whereas large method effects and shared method effects
make it difficult to make inferences about true trait variance and true trait covariance in the Campbell-Fiske
approach, this may not be a crippling problem. From a practical perspective, if the method effects are huge, then the
validity of the interpretations of the relatively tiny trait effccts may not be very important.

Trait/method correlations and interactions. Interpretations of the discriminant validity guidelines summarized
above are based on the assumption that traits are uncorrelated with method cffects. While this assumption may be
substantively reasonable in some applications, its justification is primarily pragmatic rather than substantive. Without
such an assumption the interpreiation of the guidelines is more complicated and apparenily more problematic, but the
effect of its violation on the inferences is not well documented (see Althauser & Heberlein, 1970; Wothke, 1984).
Campbell and O'Connell (1967) also proposed that traits and methods may interact, Trait/method interactions are
different from traitVmethod correlations. Trait/method correlations imply that there is an overlap in the variance that
can be explained by the main effects of traits and methods, whereas trait/method interactions imply that additional
variance can be explained by trait¥method crossproducts. Whiereas the existence of trait-method corrclations further
complicate the interpretation of the Campbell-Fiske guidelines, the existence of trait-method interactions apparently
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undermines the logical basis for the guidelines, the assumption of additivity underlying factor analysis in general, and,
perhaps, even the classical approach to test theory (Campbell & O'Connell, 1967; 1982).
In Defi f Campbell and Fiske's Inteni

The subsequently popularized factor analysis representation of MTMM data was apparently the basis of the
guidelines proposed by Campbell and Fiske (1959) and subseijuently described in Campbell and O'Connell (1967,
1982; also see Kenny & Kashy, in press). Campbell and Fiske specifically noted that "each test or task employed ior
measurement purposes is a trait-method unit, a union of a particular trait content with measurement procedures not
specific to that content. The systematic variance among test scores can be due to responses to the measurement
features as well as responses to the trait content” (p. 81). Elsewhere they endorsed Cronbach's (1946, p.475)
statement that "the final score ... is a composite of effects resulling from the content of the ilem and effects resulting
from the form of tne test used.” Campbell and O'Connell (1967) subsequently considered hypothetical MTMM
results constructed by varying aspects of latent trait factor loadings, latent method factor loadings, uniqueness, and
the associated varisnce ~»mponents. Kenny and Kashy (in press) are even more. emphatic in making this point,
stating that "this [general CFA] model is particularly attractive in that its structure directly corresponds to Campbell
and Fiske's original conceptualization of the MTMM matrix” (p. 5).

From this perspective, it is important to emphasize that \"ampbell and Fiske (1959) explicitly or implicitly
noted most of the problems that have been raised in relation to a strict interpretation of their guidelines. Their
guidelines, however, were apparently not intended to be given sucha strict interpretation nor to be the rigid,
infiexible criteria that they have come to represent. Instead, Camptell and Fiske viewed the guidelines as "common-
sense desideratum” (p. 83) and suggested that formal statistical anaiyser ... ~ as factor analyses "are neither
necessary nor appropriate at this time" (p. 103). They argued that "we believe that a caieful examination of a
multitrait-multimethod matrix will indicate to the experimenter what his next steps should be: it will indicate which
methods should be discarded or replaced, which concepts need shamper delineation, and which concepts are poorly
mcasured because of excessive or confounding method variance” (p. 103). More recently, Fiske (1982) reiterated this
conteation, adding that "I continue to believe that gGirect inspection of each trait-method unit should be carried out in
every instance. With a little thought and practice, the major interpretations of the matrix will become apparent to the
investigator” (p. 80). Their intent apparently was 10 provide a systematic approach to the formative evaluation of
MTMM data at the level of the individual trait-method unit, qualificd by the recognized limitations of their approach,
not to provide abstract, global summaries of convergent validity, discriminant validity and method effects that are a
definitive summative statement. We argue strongly that this formative orientation in the MTMM paradigm must not
be lost in the development of mathematically more sophisticated approaches to MTMM data -- that the baby should
not be thrown out with the bath water -- and propose that alternative approaches should be evaluated in relation to
this original orientation. More generally, Campbell and Fiske had a heuristic intcntion to encourage researchers to
consider the concepts of convergent validity, discriminant validity, and method effects; in this intention the were
unquestionably successful.

In summary, the Campbell-Fiske approach provides a heuristic, potentially useful structare for the formative
evaluation of MTMM data. However, as acknowledged by Campbell and Fiske (1959), there are many potentially
scrious problems and ambiguities in the interpretation of their guidehines. The heuristic importance of their work as
well as limitations in their guidelines have led to the development of aliernative approaches to the evaiuation of

MTMM data that are considered here.
The ANOVA Model for MTMM Data

< N
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MTMM data can be 2nalyzed with a three-factor unreplicated ANOVA and the ANOVA terms can be
computed directly from the MTMM matrix (Kavanagh, MacKinney & Wollins, 1571; Marsh & Hocevar, 1983;
Schmitt & Stults, 1986). When measures for all levels of traits and methods are obtained for the same subject, three
orthogonal sources of variation can be estimated. The main effect of subjects is a test of whether there are significant
differences between subjects for measures averaged across traits and methods, and is used to infer convergent
validity. The subject x trait interaction tasts whether differences between subjects depend on traits, and is used to
infer discriminant validity. If it is nonsignificant then the traits have no differential validity in that subjects are
ranked the same for all traits. The subject x method interaction tests whether differentiation depends on the method of
assessment, and is used to infer method effects. If it is significant then the method effects intrcduce a systematic
source of what is usually interpreted to be an undesirable variance. The three-way interaction is assumed to reflect
only random error such that differentiation does not depend on specific trait-method combinations. The main effects
due to traits and methods are rarely of substantive interest and are necessarily zero for standardized data. Whereas
there are numinal tests of statistical significance for the effects used to infer convergent validity, discriminant
validity, and method effects, the primary interest is typically in variance components associated with these effects.

The computaiion of effects and variance components is described by Kavanagh, MacKinney an¢ Wollins
(1971) and by Marsh and Hocevar (1983), and results for the S MTMM matrices are presented in Table 1. According
to this approach, the variance components associated with convergent and discriminant validity ar= both substantially
larger than the variance component associated with method effects for the Byrne, the YIT, and the Kelly-Fiske data.
For the Lawler data the effects of convergent validity and method effects are large, but the discriminant validity
effect is small. For the Ireland matrix, the convergent validity effect is very large, the method effect is small, and the
discriminant validity effect is very small.

Problems With the ANOVA approach

The advantages of the ANOV A approach are its ease of application and the convenient summary statistics
used to infer convergent, discriminant, and method/halo effects. The ANOVA model provides only a global
evaluation of variance components and fails to provide the formative evaluation of specific trait-method units that
was an original intent of the MTMM paradigm.

The effects in ANOVA model bear some resemblance to terms used in the Campbell-Fiske approach, but it
is imporiant to emphasize that they are not directly comparatie. In the ANOV A approach, for example, convergence
is based on the average correlation in the entire MTMM matrix, whereas in the Campbell-Fiske approach it is based
on just the convergent validitics. Thus, for example, the Ircland matrix has a much larger convergent validity effect
than any of the matrices according to the ANOVA approach even though the mean convesy; oot validity is highest in
the Byrne matrix. Also, the Lawler matrix has the third highest (of 5) convergent vaiirity ef écct in the ANOVA
approach, but has the Jowest mean convergent validity. In the ANOVA approach, an e»‘tzricly high convergent
validity effect precludes strong support for discriminant validity, whereas strong convergent validity is a prerequisite
to discriminant validity in the Campbcll-Fiske approach. Because of these disjunctures in terminology in the two
approaches, interpretations based on the ANOV A approach shoulr* be described carefully so as to not confuse them
with the more prevalent Campbell-Fiske terminology. It is also worth noting that the ANOV A approach is sensitive
to the orientation of the traits. Thus, for example, if all the traits are positively correlated, then reversing the sign of
correlations associated with one particular trait will reduce the average correlatic’s among all traits which will reduce
the convergent validity effect and increase the discriminant validity effect.
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The ANGVA model cannot be recommended. Like the original Campbell-Fiske guidelines, the ANOVA
model is based on intereiices about measured, errorful data. Important limitations of the ANOV A mode! may be
overlooked in the model's apparent but deceptive simplicity and precision. Also, this approach does not lead to the
heuristic interpretations of specific measures, traits, and methods that may b  the most important contribution of the
MTMM paradigm as a formative tool. The unfortunate linking of the ANOV A effects to the Campbell-Fiske
terminology is inappropriate. The convergent, discriminant, and methcd/halo effects in the ANOVA model are not
the same as those inferred from the Campbell-Fiske guidelines even though the two approaches may lead to
apparently consistent conclusions (sec Marsh & Hocevar, 1983). The interpretation of the average correlation in the
entire MTMM as support for convergent validity is, apparently, particularly dubious. The sensitivity to trait
orientation also appearsto®  a potential problem. At least some of the inherent weaknesses in the ANOVA model
are overcome in the related CCA model developed by Wothke (1984, 1987) that is described latter. In this sense, the
ANOVA model may have been superseded by Wothke's work.

The Cunfimmatory Factor Analysis (CFA) Approach

MTMM matrices, like other correlation matrices, can be factor analyzed to infer the nrderiying dimensions.
Factors defined by differerit measures of the same trait suggest trait effects, whereas factors defined by measures
assessed with the same method suggest method effects. With CFA the researcher can define models that posit a priori
trait and method factors, and test the ability of such models to fii the data. However, critical problems in the CFA
aprroach are the assumptions underlying the proposed models, technical difficultics in the estimation of parameters,
and the validity of inferences based on the parameter estimates (Marsh, 1989).

The CFA approach 10 MTMM data is the most widely applied altemative to the Campbell-Fiske guidelines. In
the general MTMM model adapted from Joreskog (1974; also see Marsh, 1988; 1989; Widaman, 1985): (a) there are at
least three traits (T=3) and 3 methods (M=3); (b) T x M measured variables are used to infer T + M a priori factors; (c)
each measured variable loads on one trait factor and one meihod factor but is consirained so as not to load on any other
factors; (d) correlations among trait factcrs and among method factors are frecly estimated, but cosrelations between
trait and method factors are fixed to be zero; () the uniqueness of each scale is freely estimated but assumed to be
uncorrelated with the uniquenesses of other scales. This general model, which we refer to as the CFA model with
correlated waits and correlated methods (CFA-CTCM), is presented (Model 1 in Figure 1) for a 4Tx4M design.

Insert Figure 1 About He.e

An advantage of this general CFA modecl is the apparently unambiguous interpreiation of convergent
validity, discriminant validity, and method effects: large trait factor loadings indicate support for convergent validity,
large method factor loadings indicate the existcace of method effects, and large trait correlations -- particularly those
approaching 1.0 -- indicate a lack of discriminant validity. Also, in siandardized form, the squared trait loading, the
squared method factor loading, and the error component sum 30 1.0 and can be interpreted as components of variance
for each item. Again, however, it is important to emphasize that these effects are not the same as the convergent,
discriminant, and method effects inferred from the Campbell-Fiske approach. The most obvious difference is that
inferences are based on latent constructs instcad of manifest variables. Also, as noted earlier, large method effects
and correlated method effects can influence interpretations of convergent validity and discriminant validity with the
Campbell-Fiske guidelines. Consistent with Kenny and Kashy's (in press) assertion, our interpretation of Campbell
and Fiske (1959; also see Campbell & O'Connell, 1967; 1982) suggests that their original guidelines were implicitly
based on a latent trait modcl like the CFA models. From this perspective, the cperationalizations of convergent
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validity, discriminant validity, and method effects in the CFA approach may betier reflect Carnbell and Fiske's
(1959) original intentions than do their own guidelines.

Researchers have proposed many variations to the CFA-CTCM model to examine inferences about trait oz
method variance or to test substantive iscues specific to a particular study (e.g., Joreskog, 1974; Marsh, Barnes &
Hocevar, 1985; Marsh, 1989; Widaman, 1985). Widam;n proposed a taxonomy of models that systematically varied
different characteristics of the trait and method factors that was expanded by Marsh (1988, 1989). This taxonomy is
designed to be appropriate for all MTMM studies, to provide a general framework for making inferences about the
effects of trait and method factors, and to objectify the complicated task of forrnlating models and representing the
MTMM data. Whereas deiaiied consideration of the taxonomy is beyond the scope of the present investigation (see
Marsh, 1989), four models (Figure 1) are considered that we recommend as the minimum set of models that should
be applied in all CFA MTMM studies.

The trait-only model (CFA -CT; Figure 1) posits trait factors but no method effects whereas the remaining
models posit trait factors in combination with different representations of method effects. Hence, the trait-only model
is nested under the other CFA models so that the comparison of its fit with the other CFA models provides an
indication of the size of methods effects. Implicit in this operationalization of method effects is Joreskog's contention
that "method effects are what is left over after all trait factors have been eliminated” (1971, p. 128; also see Marsh,
1989). The model with correlated trait factors but uncorrelated method factors (CFA-CTUM; Figure 1) differs from
the CFA-CTCM model only in that correlations among the method factors are constrained to be zero. Hence the
comparison of the CFA-CTCM and CFA-CTUM models provides a test of whether method factors are correlated,

In the correlated vniqueness model (CFA-CTCU; Figure 1), method effects are inferred from correlated
uniquenesses among measured variabies based on the same method instead of method factors (see Marsh, 1989;
Marsh and Bailey, 1991; Kenny, 1979; Kenny & Kashy, in press). Like the CFA-CTUM model the CFA-CTCU model
assumes that effects associated with one method are uncorrelated with those associated with different methods. The
CFA-CTCU models differs from the CFA-CTCM and CFA-CTUM inodels in that the latter two models implicitly
assume that the method effects associated with a given method can be explained by a single latent method factor
(hereafter referred to as the unidimensionality of method effects) whereas the correlated uniqueness model does not.
This important distinction, however, is only testable when there are at least four traits. When there are three traits the
CFA-CTUM and the CFA-CTCU models are equivalent so long as both models result in a proper solution (i.c., the
number of estimated parameters goodness of fit are the same fit, and parameter estimates from one can be transformed
into the other) because correlations among three indicators can be represented by a single latent trait.

The juxtaposition of the CFA-CTUM, CFA-CTCM, and CFA-CTCU models is important. So long as all
three models result in proper solutions, the comparison of CFA-CTUM and CFA-CTCU model tests the
unidimensionality of method effects (i.e., whether thc method effects associated with each method form a single
latent method factor), whereas the comparison of the CFA-CTUM and CFA-CTCM models tests whether effects
associated with different methods are correlated. Because the CFA-CTCU and CFA-CTCM are not aested, their
comparison is more complicated. For example, if both the CFA-CTCM and CFA-CTCU models fit the data
substantially better than the CFA-CTUM, all three models may be wrong: the CFA-CTUJM is wrong because it
assumes that the effects associated with each method are unidimensional and unrelated tc: the effects associated with
other method; the CFA-CTCM is wrong because it assumes that the effects associated with each method are
unidimensional; the CFA-CTCM is wrong because it assumes that the effects associated with each method are

Q unrelated to the effects associated with other methods
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From a practical perspective, the most important distinction between the CFA-CTCM, CFA-CTUM, and the
CFA-CTCU models is that the CFA-CTCM model typically results in improper solutions, the CFA-CTUM model
often results in an improper s»lution, and the CFA-CTCU almost always results in roper solations (Kenny & Kashy,
in press; Marsh, 1989; Marsh & Bailey, 1991; also see Wothke, 1984, 1987). For example, Marsh and Bailey (1991),
using 435 MTMM matrices based on real and simulated data showed that the CFA-CTCM model typically resulted in
improper solutions (77% of the time) whereas the CFA-CTCU model nearly always (98% of the time) resulted in
well-defined solutions. When both solutions were proper, parameter estimates based on the CFA-CTCU model
tended to be more accurate and precise in relation to known parai ier values based on simulated data. Even for data
specifically constructed to have correlated method effects as posited in the CFA-CTCM model but not the CFA-
CTCU model, the CFA-CTCU uniqueness model was more likely to converge to a proper solution and provided more
accurate parameter estim=ies even though it was not able to completely able to fit the data, thus indicating that it was
not a "true" model. Iriproper solutions for the CFA-CTUM and particularly the CFA-CTCM models were more
likely when the MTMM design was small (i.e., 3Tx3* vs STx5M), when the sample size was small, and when the
assumption of unidimensional method effecis was violated. From this practical perspective, the complications in
comparing the CFA-CTCM, CFA-CTUM, and CFA-CTCU models may be of limited relevance because in many
applications only the CFA-CTCU model results in a proper solution.

Covari . Analvsi

Wothke (1984, 1987; also see Browne, 1989; Kenny & Kashy, in press) described the covariance component
analysis (CCA) model tha is based in part on earlier work by Bock (1960) and Bock and Bargmann (1966) and, in
some ways, resembles the ANOVA approach discussed earlier. The "factors” in the CCA model are not based on
freely estimated factor loadings as in the CFA approach, but are fixed contrast coefficients like those used in ANOVA.
In fact, given the many parallels between the CCA and ANOVA models, it is curious that Wothke (1984, 1987) did
not evaluate this earlier approach and its relation to his CCA model. The key parameter estimates in the CCA model
are the relative size of variance components due to trait contrasts, method contrasts, and a general factor. In Wothke's
. ieterization of the CCA model, there is one general factor reflecting an average score across all the measures, T-

trait contrast factors, and M-1 method contrast factors. According to the scale free version of the CCA model that is
most appropriate for the analysis of MTMM data, the population covariance matrix Z can be expressed as:
(1) I= DU &X)D+©
where K is (M x T) x (M + T - 1) matrix of fixed othonormal column contrasts like those used in traditional ANOVA
models, ® isa(M + T -1) x (M + T - 1) variance-covariance matrix, © is a typically diagonal matrix of uniqueness
terms, and D is a diagonal matrix of scaling constraints designed to absorb scaling constants so that the model can be
fit to correlation matrices (Wothke, 1984, 1987).

The K matrix is a fixed set of coefficients constructed in the same way as in contrasts ANOVA. Thus, for
example, for a 3T x 3M design with mcasured variables x(T1M1), x(T1M2) .. x(T3,M3), the 9 x 5 K matrix can be
represented by: |
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¢))] 0.333333 0.471405 0 0.471405 0
0.333333 -0.235702 0.408248 0.471405 0
0.333333 -0.235702 -0.408248 0.471405 0
0.335333 0.471405 0 -0.235702 0.408243
0.333333 <0.235702 0.408248 -0.235702 0.408248
0.333333 <0.235702 -0.408248 -0.235702 0.408248
0.333323 0.471405 0 -0 .35702 -0.408248
0.333333 -0.235702 0.408248 0.235702 -0.408248
0.333333 -0.235702 -0.408248 -0.235702 -0.408248

where (a) the first column of 9 coefficients reflects the general factor; it is like the "mean” contrast in a typical
ANOVA,; (b) the next two columns are the T-1 trait contrasts such that the first trait contrast represents the difference
between T1 and the average of T2 and T3 and the second trait contrast reflects the different between T2 and T3
(averaged over methods); these are like the ANOVA contrasts used to reflect the T-1 degrees of freedom associated
with T traits; and (c) the last two columns reflect the M-1 method contrasts such that the first method contrast
represents the difference between the M1 and the average of M2 and M3 and the vecond method contrast reflects the
difference between M2 and M3 (averaged over traits); these are like the ANOVA cuntrasts used to reflect the M-1
degrees of freedom associated with M traits. Whereas any alternative set of contrasts can be used (Browne, 198Y;
also see Kenny & Kashy, in press), Wothke (1984, 1987) argued that the use of orthonormal contrasts like in equation
2 facilitates subsequent interpretations.

The most important parameter estimates in the CCA model are in the variance/covariance matrix (¢ )
reflecting the general factor, and the teait and method contrast factors. An arbitrainess of the scale is resolved by
fixing the variance of the general factor to 1.0 so that variance estimates for the trait and method contrast factors are
evaluated relative to the size of the general factor. In the "block diagonal” model considered here, covariances
among trait contrast factors and among method contrast factors are estimated, but all other covariances are
constrained to be zero. For the "scale free” version of the model that is most generally useful and appropriate for the
analysis of correlations, Wothke (1987) noted that models with covariance terms involving the general factor are not
identified when the MTMM matrix is small (i.e., 2T x 2M) and, apparently, are empirically underidextified for larger
designs. Whereas it 1s possible to estimaie correlations between traits and methods, Wothke's (1984, 1987)
investigation with 23 MTMM mairices indicated that this mode! frequently resulted in improper solutions.

Wothke (1987) expanded his 1984 presentation by suggesting alternative summaries of the
variance/covariance (® ) matrix (¢.g., generalized dispersion components, eigenstructures and associated eigenvaluer,
and varimax rotations) that may facilitate the interpretation of CCA parameter estimates. Nevertheless, the critical
parameter estimates -- the variance components associated with the general factor and the trait and method contrast
factors -- arc not easily interpreted in relation to the terms typically used in MTMM studies. Making a related point,
Browne (1989) indicated that relations among trait contrast factors and among method contrast factors provide ouly
indirect information about correlations between traits and between methods, and that the arbitrainess of the contrasts
used in K leads to an arbitrainess in the interpretation of the parameter estimates in @.

In an attempt to relate his model to traditional MTMM terminology, Wothke (1987; p. 38) proposed that
convergent validity is supported if the variance/covariance matrix of method contrast factors approaches zero and that
discriminant validly is established when the determinant of the variance/covariance matrix of trait contrast factors is
large. There are, however, potential limitations with both these proposals.
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1. Not even a compicte absence of method effects provides support for convergent validity, whereas it is
possible for convergent validity to exist even when there are substantial method effects. Hence, inferences based on
method contrast factors are apparently a weak: basis for inferring convergent validity.

2. A zero determinant of the trait contrast factor variance/covariance matrix indicates that at least one trait is
a linear combination of the remaining traits, thereby precluding support for the discriminant validity of all the traits.
However, the zero determinant could occur when all the traits are correlated 1.0 with each other (a complete lack of
discriminant validity), or when all but one of the traits are uncorrelated but the one remaining trait is a linear
combination of the other traits. In neither case would there be complete support for discriminant validity, but in the
latter there apparently would be strong support for the discriminant validity of all but one of the traits. Hunce,
inferences about discriminant validity based on the determinant of the covariance matrix of trait factors may not be
sufficiently sensitive to provide a useful indication of the extent of support for discriminant validity.

It is useful to examine similarities between the ANOVA and CCA m- dels. Both models provide estimates
of variance associated with a general factor, trait contrasts, and method contrasts, For both approaches:

(a) The CCA general factor, like the subjects term in the ANOVA model, is based on a subject's mean score
across all measures so that the variance component is the between subject variance in this grand mean score. The
relative size of this variance component reflects an overall average agreenient across traits and methods; if scores
reflecting different traits and methods are all equal within each subject but vary across subjects, then all the variance
will be due to the general factor. Thus, in the ANOVA model, this term is defined as the convergent validity effect
(although we noted that limitations with this interpretation).

(b) The variance components associated the trait contrast factors, like the trait x subject interaction in the
ANOVA model, reflects the extent to which profiles of trait scores vary from subject to subject. To the extent that
this component is large, subjects differ systematically in how they are ranked on the different traits. If the trait scores
for each subject are equal, then the traits do not differentiate among subjects. Thus, this variance component
provides an apparently useful indication of discriminant validity.

(c) The variance components associated with the method contrast factors, like the method x subject
interaction in the ANOV A model, reflect the extent to which profiles of method scores vary from subject to subject.
To the extent that this component is large, subjects differ systematically in how they are ranked on the different
methods. If scores reflecting the different methods are equal for each subject, then the methods do not differentiate
among subjects. Thus, this variance component provides an apparently useful indication of method effects.

(d) Both models emphasize the global evaluation of variance components and not the formative evaluation
of specific measures, traits, and methods that apparently is an important contribution of the MTMM paradigm as a
formative tool.

(e) The ANOVA and CCA models are scnsitive to the orientation of the variables (i.e., changes in sign
associated with a given variable). Thus, as noted earlier, the change in orientation of any variable will typically have
a substantial effect on the variance components. (This characteristic of the CCA model and its implications are
discussed further in relation to analyses of the Kelly and Fiske data,). As a consequence, it is probably advisable to
reflect all traits so as to maximize the number and extent of positive correlations in the MTMM matrix.

There are, however, important differences in the ANOVA and CCA approaches. Inferences in the ANOVA
model are based on mecasured variables whereas those in the CCA model are based on latent variables, In the
ANOVA model the variance associated with the general factor is ‘~terpreted as an indication of convergent validity;

Wothke placed little emphasis on the variance of the general factor in his CCA model except as a basis of comparison

4 N
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for other variance components, but offered no criteria of convergent validity other than a lack of method effects.
Noting limitations in Wothke's proposed test of convergent validity, we suggest that the size of the variance
component associated with the general factor -- in relation to those associated with traits and methods -- may be the
best indication of convergent validity available in the CCA model. There are aiso apparently important differences in
how the variance components associated with each of the T-1 trait contrasts and the M-1 method contrasts are
combined. In the ANOVA model, the variance components are combined additively, whereas Wothke's proposal to
use the determinant implies a multiplicative combination.] The difference between the two approaches is clear in the
example noted earlier in which all but one trait is uncorrelated with the others and the remaining trait is a linear
combination of the others. An additive combination would result in a nonzero, possibty very large combined effect of
the trait contrasts, whereas the product combination would result in a zero combined effect.

. ite Direct Product Model

The CFA and CCA models considered here implicitly assume that trait and method effects are additive,
Observations by Campbell and O'Connell (1967, 1982) and others, howe:er, suggest that the relation may be
multiplicative or a combination of multiplicative and additive rather than strictly additive. Both the additive and
muliplicative models posit that correlations between traits measured with the same method will be higher than
correlations between traits measured with different methods -- a method effect. If this method effect is additive, then
the increase in correlation due to this method effect is expectied to be relatively similar for all correlations of differing
wagnitudes. Campbell and O'Connell, however, suggested that the method effects are systematically larger for traits
«hat are more highly correlated and systematically smaller for traits that are less correlated. This empirical
observation suggests that method effects have a multiplicative effect on trait correlations.

Campbell and O'Connell (1967, 1982) offered two different interpretations of this multiplicative effect. The
differential augmentation perspective is that observed correlations are a multiplicative function of the true correlation
and a method bias. According to this perspective, when true traits are uncorrelated there will be no bias (i.e., the
method effect multiplied by zero is zero). In contrast, when traits that are substantially correlated the correlation
between the traits based on the sarne inethod will be biased so iong as the method effect is nonzero. This portrayal of
method effects differs from the additive: model that implicitly assumes that the size of method effects does not vary
according the size of true trait correlations. The differential attenuation perspective suggests that the use of different
methods will attenuate the true correlation between two traits. The extent of ﬂlié attenuation, however, will vary
according to the size of the correlation. If the true trait correlation is already zero, the correlation cannot be
attenuated. In contrast, if the true trait correlation is substantial, then the empirical correlation can be attenuated
substantially. According to this perspective, the corr¢lation between two traits measwed by the same method is the
more accurate estimate of the true correlation, and this correlation is attenuated when different methods are used.
This perspective is apparently consistent with the typical simplex pattern of relations observed in lorgitudinal data
whereby the size of correlations between traits declines systematically as the time between the collection of the
measures becomes longer.

Browne (1984), based in part on earlier work by Swain (1975), described the composite direct product
(CDF) model that posits a multiplicative rather than an additive combination of trait and method effects. According
to the CDP m¢ : -\ there are two component correlation matrices in a MTMM matrix of correlations among laient
variable scores (Pc), one containing correlations between latent traits (Pt) and the other containing correlations
between latent methods (Pm). According to the CDP model, the covariance matrix of measured varii..es with

dimension (mt x mt) can be expressed as:
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&) > = D Pm x PR+ E ) D
where Pm is an (m x m) latent variable score correlation matrix of method components, Pt is a (t x t) latent variable
score correlation matrix of trait compor:znts, D is a (mt x mt) positive definite, diagonal matrix of scale co .traints
reflecting latent variable score standard deviations, E is a positive, definite diagonal matrix of uniquenesses reflecting
the ratio of unique score variance to latent variable score variance, and x indicates the right direct Kronecker product
of Pm and Pt. _
The values of D are typically of nc interest and are designed primarily to absorb scaling changes such as those
involved in going from a covariaice matrix to a correlation matrix. The E values, however, represen the ratios of
unique score standard deviations to latent variable score standard deviations. Browne (1984, 1989) noted that these
values can be interpreted as the comelation between an observed and latent variable score, an "index of
communality,” when transformed by the formula:
“@) communality (Ti, Mr)= 1/[1 + (E(Ti, Mr)]
According to the CDP model, the correlation matrix Pc, appropriately corrected for attenuation, has the direct product
structure:

Pc = Pm X Pt
where Pm is the correlation matrix of relations among latent method factors with a typical element being r(Mr, Ms)
and Pt is the correlation matrix of relations among latent trait factors with a typical element being r(Ti, Tj). From this
definition it follows that for latent ‘/ariable scores
“) r(TiMr, TjMs) = r(Ti,Tj) r(Mr,Ms)
It is useful to demonstrate the relation between Pm, Pt, and Pc using, for example, a 2T x 3M design.
)

Pm = X Pt= Pc= Pc X Pt =

1 1 1

M21 1 T21 1 21 1

M3t M32 1 M21 T21xM21 1
T21xM21 M21 T21 1
M3 T21xM31 M32 T21xM32 1
T21xM31 M3t T21xM32 M32 T21

where, for example, T21 is the corrclation between traits 1 and 2 and T21xM31 is the product of the correlation
between traits 1 and 2 and the correlation between methods 3 and 1. All elements of Pt are multiplied by each
element of Pm. Thus, the relation between traits 1 and 2 measured with method 1 is T21 multiplied by M11 =1 so
that the product is simply TZ1. Similarly, the relation between trait 1 measured with methods 1 and 2 (ie., a
convergent validity) is M21 times T11 = 1 so that the convergent validity is simply M21. Thus, the coefficients in the
off-diagonal of Pm reflect convergent validity. Note also, that the correlation between the same traits is assumed to
be constant across all methods (i.c., r(TIM1,T2M1) = (TIM2,T2M?2) = r(TIM3,TZM3) = T21). Similarly, the
correlation hetween two methods -- convergent validity -- is assumed to be the same across all traits (i.e.,
r(TIM1,T1IM2) = r(T2M1,72M2) = M21). Because the 15 off-diagonal values in this Pc are expressed in terms of
only 4 estimated parameters (T21, M21, M31, M32), the CDP model it very parsimonious.

Browne (1984, 1989; also see Bagozzi & Yi, 1990; Cudick, 1488) notes that an important advantage of this
model is that it provides parameter estimates that can be used to evaluate the original 4 Campbell-Fiske guidelines.
1 r(TiMp, TiMq) = «(Ti,Ti) (Mp,Mq) = 1(Mp,Mq) >> 0.
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According to the CDP model, each convergent validity for latent variable scores is equal to one of the off-diagonal
values in Pm, Hence, the first Campbell-Fiske criterion is satistied whenever all the off-diagonal values in Pm are
statistically significant, large, and positive.

2 r(TiMp, TiMgq) > ((TiMp, TjMq) implies

[r(TiMp, TjMq)] / [r(TiMp, TiMq) ] = [¢(Ti,Tj) r(Mp,Mq)} / [r(Mp, Mq) ] = (Ti, Tj) < 1.0
According to the CDP model, the latent variable trait correlations, the off-diagonal values in Pt, are the ratio of
HTHM correlations to the convergent validities. Hence, the second Campbell-Fiske criterion is met whenever the off-
diagonal values of Pt ure less than 1.0. This will always be the case so long as the CDP solution is proper such that Pt
is positive definite.

3 1(TiMp, TiMq) > (TiMp, TiMp) implies
[«(TiMp, TiMp)} / [r(TiMp, TiMa) ] = [«(Ti, Tj) } / r(Mp, Mg) } < 1.0
According to tiie CDP model, \he ratio of HTMM correlations to the convergent validities is the ratio of trait
correlations to 1nethod correlations. Hence the third Campbell-Fiske guideline is met when all the off-diagonal values
in Pt are less than all the off-diagonal values in Pm.
4 r(TiMp, TjMq) > r(TkMp, TIMq) implies r(TiMr, TjMs) > r(TkMr, TIMs)
This criterion is met whenever the CDP model fits the data because:
r(TiMr, TjMs) / rf(TkMr, T\Mis) = (T, Tj)/ r(Tk, TI) has the same value for any Mr or Ms.

Although not explicitly noted in previous presentations of the CDP moxlel, it is aiso possible to interpret the
additional guidelines from the Campbell-Fiske approach (see guidelines 5 and 6 discussed earlier) in terms of the
CDP model.

S r(TiMp, TiMp)/ [(r (TiMp, TiMp) TjMp, TiMp)] 1”2 <<1

Because the values in Pt reflect correlations among latent trait factors, this condition is satisfied whenever the CDP
model results in a proper solution in which Pt is positive definite. Also, as noted earlier, the CDP model provides an
estimated communality the can serve as an estimate { reliability.

6. r(TiMr, TjMr) > r(TiMr, TjMs) implies - .Mr, TjMs)]/ [¢(TiMr, TjMr)] =

[¢(Ti,Tj) r(Mr, Ms) ] / [«(Ti, Tj) r(Mr,Mr)] = [r(Ti,Tj) r(Mr, Ms))/ [r(Ti,Tj)] = r(Mr, Ms) < 1.0
According to the CDP model, thzre are method effects whenever the correlations in Pm are less than 1, and so there
are always method effects when the CDP results in a proper solution in which Pm is positive definite. Also evident in
this derivation is the observation that r(Mr, Ms) reflects both convergent validity (see guideline 1) and method effects
(i.e., the ratio of HTHM 7nd the corresponding HTMM correlations). Whereas this observation appears paradoxical
from the traditional "additive" perspective, it follows naturally from the "multiplicative” perspective underlying the
CDP model.

It is also pessible to place further constraints on the CDP model that may be useful in particular situations.
Thus, for example, it is possible to further restric: the structure of E, the diagonal matrix of uniquenesses, so that it
also has a direct product structure (Browne, 1984, 1989; Wothke & Browne, 1989). Also, if the covariance matrix
rati  than the correlation matrix is analyzed, it is possible to further restrict the structure of D, the diagonal matrix of
scale constraints reflecting latent variable score standard deviations. Such models may be useful when the MTMM
data reflecis multiple battery data, such as when the same measures are collected on multiple occasions, but are
apparently less relevant to other MTMM designs and are not central to interpretations of convergent validity,
discriminant validity, and method effects (for further information sce Browne, 1984; 1989).

Resul roach
19
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P Solut { Good (F;

Initially we focus on the akility of the latent variable models -- the CFA, CCA, and CDP models -- to fit the
data. The evaluation of fit in covariance structure analysis has recently received considerable attention and a detailed
discussion of the issues is beyond the scope of this study (see Bentler, 1990; Cudeck & Henly, 1991; Marsh, Balla,
and McDonald, 1988; McDonald and Marsh, 1990 for gencral discussions and Marsh, 1989, for a discussion in
relation to MTMM data). Whereas there are no well established guidelines for what minimal conditions constitute an
adequate fit, a general approach is to: (a) establish that the solution is "proper” by establishing that dhe model is
identified, the iterative estimation procedure converges, parameier estimates are within the range of permissible
values (i.e., are inside the admissile parameter space), and the size of the standard error of each parameter estimate is
reasonable; (b) examine the parameter estimates in relation to the substantive, a priori model and common sense; (c)
evaluate the X% and subjective indices of fit for the model and compase these to values obtained from altemative
models.

In the evaluation of MTMM models there is an unfortunate tcndency to deemphasize the first two points. If
a solution is ill-defined, then further interpretations must be made cautiously if at &ll. If the parameter cstimates make
no sense in relation to the substantive, a priori model. then fit may be irrelevant. For example, if two indicators of the
same trait factor are supposed to load in the same direction but actually load in the opposite direction, then the results
do not support the construct validity of the trait even if the model fits the data well. In this respect, the first criterion
is a prerequisite for the next two and the second criterion is a prerequisite for the third.

For each of the latent variable models, solutions are proper if the model is identified and if the estimated
parameters fall within their permissible range. For models considered here a proper solution requires that all
estimated covariance matrices should be positive definite. In the CFA models this means that there are no negative or
zero variance estimates and that factor correlations do not exceed 1.0, For the CDP and CCA models this means that
the matrices of scaling components and error components contain no negative or zero values. Using
reparameterizations such as those suggesied by Rindskopf (1983; also sec Marsh, 1989) it is possible to restrict, for
example, a negative variance estimate to be non-negative. Typically this results in the offending parameter taking on
a zero value that is on the boundary of the permissible parameter space and in a slight decrement in goodness of fit
reflecting this implicit inequality constraint. Marsl (1989) argued that whereas this may be useful in some situations,
it is important to emphasize that a solution with, for example, 4 zero variance estimate is still improper and should be
treated with the same caution as if the parameter estimate were ncgative. In this sense, the reparameterization does
not alter the underlying problem but mercly serves to make it less obvious. Making a similar point, Joreskog and
Sorbom (1989) emphatically stated that "it should be emphasized that constraining error variances to be non-negative
does not really solve the problem. Zero estimates of error variances are as unacceptable as are negative estimates” (p.
215). There is an ongoing debate about whether improper solutions warrant any serious consideration and, if they are
considered, the conditions under which interpretations are justificd. Not wanting to enter this debate in relation to
particular applications in the present investigation, our position is that if a model frequently results in improper
solutions across a wide range of applications for which the model is intended, then the usefulness of the model is
limited (sec Marsh & Bailey, 1991).

Goodness of fit is evaluated in part with an overall X2 test. As typically employed the posited model is
rejected if the X2 is large relative to the degrecs-of-freedom (df), and accepted if the X2is small and nonsignificant,
However, hypothesized models such as those considered here are best regarded as approximations to reality rather

than exact statements of truth so that any model can be rejected if the sample size is sufficiently large. Conversely,
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almost any model will be "accepted” if the sample size is sufficiently small. From this perspective Cudeck and
Browne (1983) and many others have argued that it is preferable to depart from the hypothesis testing approach that
assumes that any model will exactly fit the data.

As emphasized by Bentler (1990), when two models are nested the statistical significance of the difference
in the X2s can be tested relative to the difference in their df. Widaman (1985) emphasized this feature in developing
his taxonomy of MTMM models and in comparing the fit of different models. However, the problems associated with
hypothesis testing based on the X2 statistic also apply to tests of X2 differences. Furthermore, many important
comparisons are not nested and so cannot be compared using this procedure. For example, whereas the CFA-CTUM
is nested under both the CFA-CTCM and CFA-CTCU models, neither of these latter two models is nested under the
other. Nevertheless, a pattemn of nested relations does facilitate interpretations in differences in fit.

Researchers have developed a plethora of different indices of fit, but there is no clear consensus about which
are the most useful. Whereas a comparison of different indices is beyond the scope of this study, we present results
for the: the X2 that can be used to compute values for most other indices; the relative noncentrality index (RNI;
McDonald & Marsh, 1990), the Tucker-Lewis index (TLI; Tucker & Lewis, 1973; also see Maysh, Balla &
McDonald, 1988; McDonald & Marsh, 1990), and the single-samgle cross-validation index (Ck; Browne & Cudeck,
1989; Cudeck & Henly, 1991). Both the TLI and RNI indices scale goodness of fit along a scale that, except for
sampling fluctuations, varies between 0 and 1. Values greater than .9 are typically interpreted as indicating an
acceptable fit, although it may be more useful to compare the values of alternative models. The TLI and RNI differ
in that the TLI contains a penalty function based cn the number of estimated parameters whereas the RNI does not.
The Ck index is designed to select the model that will cross-validate most effectively, and so it imposes a penalty that
is a an increasing function of the number of estimatcd parameters and a decreasing function of the sample size.

The minimal condition for an acceptable fit is a proper solution. If the solution is improper, then further
consideration should be pursued with extreme caution and may be dubious. This problem has been prevalent in the
application of the CFA models -- particularly the CFA-CTCM model. The prevalence of this probiem led, in part, to
recommendations for the CFA-CTCU, CCA, and CDP models.

The CFA-CTCU, CFA-CT and CFA-CTUM models resulted in 0, 1 and 2 improper solutions respectively,
whereas the CCA and CDP models each resulted in one improper solution. Consistent with previous research (e.g.,
Marsh, 1989; Marsh & Bailey, 1991; Wothke, 1984; 1987), the CFA-CTCM resulted in a proper solution for only 1 of
the 5 MTMM matrices (Table 2). All other models considered here performed better than the CFA-CTCM model in
terms of resulting in proper solutions. Consistent with findings by Marsh and Bailey (1991), the one proper solution
for the CFA-CTCM model was obtained when the samiple size (N = 1200) and MTMM design were large (STx3M vs.
3Tx3M). The consistency with which the CFA-CTCM model results in improper solutions undermines its uscfulness
and suggests, perhaps, that it should not be given a central role in the empirical evaluation of MTMM data. Thisisa
very serious problem because most applications oi the CFA approach -- ana the relatively few comparisons of the
CFA approach with other latent variable approaches -- have relied exclusively o1 primarily on the CFA-CTCM model.

Insert Table 2 About Here

For all five data sets, the X2s associated with the CFA-CTCU model were better than those for any the other
mode?s that resulted in proper solutions. The TLI, incorporating a penalty for a lack of parsimony, was marginally
better for the CFA-CTUM model than the CFA-CTCU model for the Kelly and Fiske data, but the TLI was better for
the CFA-CTCU model than any other model that resulted in a proper solution for each of the other data sets, The Ck
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that imposes a penalty function that depends on sample size, was better for CDP model than the CFA-CTCU model
for the Lawler data that had the smallest sample sizc. The TLIs and RNIs were all substantially greater than .9 for the
CFA-CTCU model each of the five data sets.

The examination of goodness of fit -- both the number of improper solutions and the fit indices -- provide
support for the CFA-CTCU model. There are, however, some relevant qualifications to these conclusions. For all
the data sets, several different models provided apparently acceptable fits in that the solutions were proper and both
the TLI and RNI were larger than .9. Because the CFA-CTCU model is considerably less parsimonious -- uses more
estimated parameters to fit the same data -- it may be premature to claim thai .t fits the data better. Also, because the
CFA, CCA and CDP models are so different, it is important o evaluate the usefulness of alternative models in terms
of interpretations of the parameter estimates in relation to providing information about convergent validity,
discriminant validity, and method effects and providing a formative evaluation of each trait-method unit.

The CFA Models: Goodness of Fit

The comparison of the fit indices for the various CFA models (Table 2) is facilitated by the nesting relations
among the models. The strategies used to compare these model outlined here appear to offer a reasonable basis for
evaluating assumptions underlying the models. The CFA-CT model is nested under the other CFA models considered
here. The size of the difference in fit between the CFA-CT model and each of the other models provides an indication
of the size of the method effects. For all five data sets, the fit of the CFA-CT model is significantly poorer than the
other CFA models, indicating the existence of method effects. Whereas the comparisons vary somewhat depending
on which models are compared, the inferred method effects are smaller for the Byme data, the YIT data, and to a
lesser extent, the Kelly and Fiske data. In contrast, the size of method effects are larger for the Lawler data and the
Ireland data (although the improper solution for the CFA-CT model for the Ireland data dictates caution).

The comparison of the CFA-CTUM and CFA-CTCU models provides a test of the unidimensionality of
method cffects associated with cach method when T > 3 and both models result in proper solutions. For the two data
sets with T=3 (the Byrne data and the I.awler data) the CFA-CTUM and CFA-CTCU models are equivalent so long
as both result in proper solutions, but the CFA-CTJM solutions were both improper (Table 2). For two of three
remaining data sets with T=S5, the fit of the CFA-CTCU is significantly better than the CFA-CTUM model,
suggesting that the method effects are not unidimensional. For one data sct (Kelly and Fiske) the CFA-CTUM and
CFA-CTCU do not differ significantly, suggesting that the method effects in this study are unidimensional.

The comparison of the CFA-CTUM and CFA-CTCM models provides a test of whether the method effects
associated with different methods are correlated, so long as both models result in proper solutions. The fit of the
CFA-CTCM is consistently better than the CFA-CTUM model, suggesting that effects associated with different
methods may be correlated. These results must, however, be viewed cautiously since the CFA-CTCM resulted in
“nproper solutions for all but the YIT data. For the YIT data, the fit of the CFA-CTCM model is better than the CFA-
CTUM model, but the difference in fit (e.g., TLIs of .978 and .982) is very small.

In general, the CFA-CTCM and CFA-CTCU models are not nested. When T=3, however, the CFA-CTCU
and CFA-CTUM models are equivalent (method effects are necessarily unidimensional) and so the CFA-CTCU
model is nested under the CFA-CTCM model. For the two data sets with T=3, the fit of the CFA-CTCM fit is
marginally better than that of the CFA-CTCU. Interpretations must be made cautiously, however, since the CFA-
CTCM solutions are improper. For the three data sets with T=5, the CFA-CTCM and CFA-C1CU models are not
nested; the CFA-CTCM model fit better in onc case whercas the CFA-CTCU fit better in the other two cases. Except

22
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for the YIT data in which the CFA-CTCU model fit better, however, the improper solutions for the CFA-CTCM

model dictate caution in these comparisons.

Comparisons among the CFA models are most useful for the YIT data since all the CFA models resulted in
proper solutiorss. For this data set, most of the variance can be explained by the CFA .CT model (TLI = .903),
although models with method effects (TLIs of 978 - .994) fit the data significantly better. The CFA-CTUM/CFA-
CTCM comparison (.978 vs. .982) suggests that the effects assov ated with different methods are slightly correlated.
The CFA-CTUM/CFA-CTCU comparison (.978 vs. .994) suggests that the various effects associated with each
method are not unidimensional. Overall the CFA-CTCU model fits the best, even though there is some indication that
its assumption of uncorrelated method effects is violated to a small extent (as evidenced by the CFA-CTUM/CFA-
CTCM comparison). Hence, it may be useful to compare parameter estimates for the CFA-CTCM and CFA-CTCU
models (see below).

The CFA Models: Interpretation of Parameter Estimates,

Parameter estimates for the CFA-CTCU model ar~ summarized for all five data sets in Appendix 2, Also
presented is the CFA-CTUM sclution for Kelly and Fiske data that did not differ significantly from the CFA-CTCU
solution, and the CFA-CTCM solution for the YIT data that was the only case in which this model resulted in a
preper sofution. For all models, large and statistically significance trait factor loadings provide an indication of
convergent validity whereas large trait factor correlations -- particularly those approaching 1.0 -- suggest a lack of
discriminant validity. Method effects are inferred from large and statistically significant method factor loadings in
the CFA-CTCM and CFA-CTUM models, and from large and statistically significant correlated uniquenesses
(among different variables assessed by the same method) in the CFA-CTCU model.

Byme data. In the CFA-CTCU solution (Appendix 2) the trait factor loadings are consistently very large, the
trait factor correlations are small or moderate, and the correlated uniqueness are small to moderate. As predicted,
correlations between T2 and T3 are close to zcro whereas other trait correlations are larger. It is also evident that
method effects are smaller for M1 than for M2 and particularly M3, whereas trait effects are smaller for M3, These
results provide strong support for the construct validity of interpretations of these data.

Lawler data. In the CFA-CTCU solution (Appendix 2) the trait factor loadings are large for M1 and M2, but
small or nonsignificant for M3. The trait correlations are moderately large, but do not approach 1.0. Correlated
uniquenesses are small to moderate. These results provide reasonably strong support for the construct validity of
interpretations of measures associated with M1 and M2, but may call into question those based on M3 where T3M3 is
the only variable with a significant trait factor loading.

YIT data. Solutions are presented (Appendix 2) for both the CFA-CTCU and CFA-CTCM methods since -~
this is the only data set in which the CFA-CECM’ihodel resulted in a proper solution. For both models, the trait
factor loadings are consistcntly high whereas the trait factor correlations are small to moderate. Although these
parameter estimates are similar in the two models, there is a tendency for trait factor loadings and trait factor
correlations to be somewhat higher in the CFA-CFCU model (alsc see Marsh and Bailey, 1991; Kenny & Kashy, in
press). Other parameter estimates in the two models, however, are not so easily compared. Correlated uniquenesses
in the CFA-CTCU model tend to be small and more than haif are nonsignificant, indicating weak method effects.
Method factor loadings in the CFA-CTCI model are small to moderate but most are statistically significant,
apparently providing somewhat stzonger evidence of method effects than the CFA-CTCU modei. In the CFA-CTCM
model, the M1/M2 and M1/M3 correlations are small, but the M2/M3 correlation is moderate. In the CFA-CTCU

Q model, effects associated with different methods are assumed to be uncorrelated. The uniqueness terms in the CFA-
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CTCU model are systematically larger than those in the CFA-CTCM model because they include the effects of both
the uniqueness and method effects in the CFA-CTCM model. For the same reason, the squared multiple correlations
(SMCs) are smaller for the CFA-CTCU model than the CFA-CTCM model. If the effects associated with a single
method are unidimensional, the CFA-CTCM model provides a more parsimonious and useful representation of
method effects (i.e., the squared method factor loading can be interpreted as the proportion of variance due to method
effects). If, on the other hand, the method effects are not unidimensional, then this convenient summary offered by
the CFA-CTCM may be inappropriate.

Kelly and Fiske data. Here the CFA-CTCU and CFA-CTUM solutions (Appendix 2) are compared. Given
that the two solutions are nested and do not differ significanily, it is not surprising that the trait factor loading and
trait factor correlations are similar. Trait factor loadings are consistently large for M1, large for all bui T4M2 for M2,
and moderate for M3. Trait correlations are small to moderate. For both models method effects are small for M1
(except T3M1) and small o moderate for M2 and M3, Particularly because the difference between the two models is
nonsignificant, the more parsimonious, convenient representation of method effects in the CFA-CTUM model is
preferable to the CFA-CTCU mode! in this example.

Ireland data. Here, the CFA-CTCU and CFA-CTUM solutions (Appendix 2) are compared. Whereas the
CFA-CTCU model fit the data significantly better, the difference was not large (TLIs of .988 and .964). Again, the
trait factor loadings trait factor correlations are very similar for the two models. The trait factor loadings are
consistently high, indicating convergent validity, but the trait factor correlations are so high that there is little or no
support for divergent validity. Although the method factor loadings and correlated uniquenesses are not directly
comparable, both indicate moderate to large method effects. These results thus suggest a good overall agreement
across the different methods, but a clear lack of discriminant validity.

The CCA Model

CCA parameter estimates for the five data sets are summarised in Appendix 3. The critical parameter
estimates are the variance compunents associated with the trait and method contrast factors. For present purposes we
interpret large variance components associated with trait contrast factots as support for discriminant validity and
large variance components associated with method contrast factors as evidence of method effects. With misgivings
based on limitations noted earlier, we interpret large variance components associated with the general factor -~
compared to those associated with trait and method contrasts -- as support for convergent validity because this is
apparently the only available indicator of convergent validity. Also, because the general variance component is fixed
to 1.0 to estblish the scale of the other variance components, the size of all other variance components must be
interpreted in relation to that of the general factor,

Byme data. The variance components associated with trait contrasts are larger than those associated with
method contrasts (see Appendix 3), but the largest component is for the general factor. This suggests the existence of
weak method effects, clear support for discriminant validity, and even stronger support convergent validity.

Lawler data. The variance components associated with method contrasts are larger than those associated
with trait coatrasts (Appendix 3}, but the largest component is for the general factor. This suggests substantial method
effects, limited support for discriminant validity, and strong support for what is interpreted to be convergent validity.

YIT data. The variance components associated with method contrasts are smaller than those associated with
trait contrasts (Appendix 3), but the largest component is for the general factor. This suggests a relative lack of
method effects, cicar support for discriminant validity, and strong support for what is interpreted to be convergent
validity.
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Kelly and Fiske data. The variance components associated with method contrasts are gencrally smaller than
those associated with trait contrasis (Appendix 3), but the component for the general factor is larger than all but one
of the components associated with traits and all the components associated with methods. This suggests relatively
small method effects, support for discriminant validity, and support for what is interpreted to be convergent validity.

A potential weakness of the CCA approach noted earlier is its sensitivity to the orientation of traits that is
evident in a second analysis of the Kelly and Fiske data. T3, ratings of the trait "seriousness," tends to be negatively
correlated with the other traits (see Appendix 1). We rcanalyzed the Kelly and Fiske data after reflecting ihe
orientation of T3 (i.e., reversing all the signs of correlations associated with T3M1. T3M2, and T3M3). This resulted
in a different chi-square (129.09 vs. 115.87) and substantially different variance components (Appendix 3).
Specifically, the variance components associated with the trait and method contrasts are substantially smaller in the
reanalysis. This follows because the variance component of the general factor is the between subject variance on the
mean score and reflects the average correlation among all the {latent) measures. Its value is fixed at 1.0 and the size
of other variance components are scaled in relation to its value. By reversing the signs of the predominantly negative
correlations between T3 indicators and the other measures, the average correlation among measures is increased as is
the between subject variance on the mean score. This results in a higher proportion of the variance due to the general
factor, which in the CCA model is translated into lower variance components due to trait and method contrast factors.
It should be noted that if all measures in a MTMM study are substantially and positively correlated, reversing the
orientation of one of the traits would typically have even larger effects than in the Kelly and Fiske data. The
reflection of "negatively oriented” traits so as to maximize the average correlation among all traits is probably a
reasonable rule to overcome this apparent arbitrainess in the CCA approach, although Wothke (1987) did not do this
with the Kelly and Fiske data. More generally, however, the extreme sensitivity of the CCA approach to the
orientation of traits appears to be a potentially serious limitation in the approach.

Ireland data. The CCA model resulted in an improper solution. As a pragmatic alternative, we fit the
completely diagonal version of the CCA in which covariances among trait contrast factors and among method
contrast factors were all fixed to be zero (see CCA-Diag in Appendix 3). The completely diagonal model is not
generally recommended because it depends on the appropriateness of the particular contrasts in a way that is
idiosyncratic to a particular application (sec Wothke, 1984; 1987). The variance components associated with method
contrasts are larger than those associated with trait contrasts, but the component for the general factor is much larger
than those associated with either trait or method contrasts. This suggests small method effects, almost no support for
discriminant validity, ard strong support for what is interpreted to be convergent validity.

The CDP Model

CDP parameter estimates for the five data sets are summarised in Appendix 4. The critical parameter
estimates are the correlations among trait factors and among method factors. As noted earlier: (a) high method factor
correlations are interpreted as support for convergent validity (agreement between measures based on different
methods); (b) trait factors substantially smaller than 1.0 and smaller than the method factor correlations are
interpreted as support for discriminant validity. Method effects have a very different interpretation within the context
of the "multiplicative” CDP model than in the additive models considered earlier and, according to the CDP model,
there are always method cffects whenever the CDP solution is proper.

Byme data, The Pm correlations for the Byrne data are consistently very large and consistently larger than
the Pt correlations, whereas the Pt correlations are consistently smaller than 1. This implies clear support for all the
Campbell-Fiske guidelines and strong support for the construct validity of these measures. The relative lack of
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correlation between T2 and T3 observed in the MMM matrix is evident in Pt. Similarly, the apparently stronger
agreement between measures based on M1 and M2 is evident in Pm.

Lawler data, The Pm correlations in the Lawler data are all statistically significant, but only the MIM2
correlation is substantial. The Pm correlations, except for the MIM2 correlation, are consistently smaller than the Pt
correlations. In general, these results suggest modest support for convergent validity and a lack of discriminant
validity, although there is support for the convergent validity of measures based on M1 and M2. Thus, *he apparently
better agreement between measures based on M1 and M2 observed in the MTMM s also apparent in Pm.

YIT data, The Pm correlations for the YIT data are consistently large and consistently larger than the Pt
correlations, whereas the Pt corselations are small to moderate. This implies clear support for all the Campbell-Fiske
guidelines and strorig support for the construct validity of these measures. The better agreement between measures
based on M2 and M3 ¢.»:erved in the MTMM is also apparent in Pm. Whereas correlations among traits are not large,
the patterns of differences in the MTMM matrix (Appendix 1) are evident in Pt.

Kelly and Fiske data, The Pm correlations for the Kelly and Fiske data are moderate to large. Whereas the Pt
correlations are consistently less than 1.0, some are larger than the Pm correlations. Whercas the Pm correlation
t tween M1 and M2 is consistently larger thar. the Pt correlations, the other correlations in Pm are not. These results
suggest clear support for convergent validity, but only weak support for Jdiscriminant validity. The better agreement
between measures based on M2 and M3 observed in the MTMM matrix (Appendix 1) is apparent in Pm. Similarly,
the pattem of correlations among traits in the MTMM matrix is evident in Pt.

Ireland data, The Pm correlations for the Ireland are consistently large. The Pt correlations, however, are
consistently even larger and often approach 1.0. These results suggest clear support for convergent validity, but no
support for discriminant validity.

Discussion and R faii

Five approaches to the analysis of MTMM data are described here. Even though all the approaches use a
similar terminology (convergent validity, discriminant validity, and method effects), they employ different
operationalizations of these terms and so are not equivalent. This has led to considerable confusion in MTMM
research. For this reason it is useful to summarize strengths and weakness of the different approaches and to ot{er
recommendations for their use.

The Campbell-Fiske approach continue to be the best known and most widely applied of the approaches.
Despite important limitations such as a reliance on meastued variables instead of latent constructs, this approach
continues to be a potentially useful and heuristic approach to the formative evaluation of MTMM data, This
approach is also the basis, to a greater or lesser extent, of subsequent approaches. For this reason we recommend that
a systematic application of the expanded set of Campbell-Fiske guidelines to provide a preliminary inspection of the
MTMM data prior to the application of more sophisticated approaches. Consistent with the Campbell and Fiske's
recommendations and the many limitations in this approach, it should be used as a formative evaluation of the data
that focuses on specific trait-method units and not a global summative statement. The guidelines should not be the
sole basis for evaluating MTMM data.

The reliance of each of alternative approaches on the eriginal Campbell-Fiske approach has bott: advantages
and limitations. The widely known terminology used in the Campbell and Fiske approach has provided an important
starting point for other approaches. Nevertheless, the terms convergent validity, discriminant validity, and method
effects were not adequately defined in the Campbell-Fiske approach and there is considerable ambiguity in how their
guidelines relate to these different aspects of MTMM data. Partly as a conscquence of this initial ambiguity,
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subsequent approaches have each adapted somewhat different and possibly incompatible guidelines for these different
characteristics. As asserted by Kenny and Kashy (in press), it appears that Campbell and Fiske (1959) implicitly
based their original guidelines on a general CFA model. In the CFA-CTCM model it is clear that convergent validity,
discriminant validity, and method effects are a function of the sizes of trait factor loadings, trait factor coerelations,
and method factor loadings respectively. Because of this apparently unambiguous interpretation of these features
based on the CFA-CTCM model, we recommend that this model should be used as a touchstone for defining
terminology in MTMM studies and for evaluating new models or different approaches. The fact that the CFA-CTCM
model typically results in improper or unstable solutions means that other approaches are needed. Similarly, lamenting
that "the rich detail of the general CFA model is not a realistically achievable goal” (p. 22), Kenny and Kashy argued
that it is necessary to introduce simplifying conditions to achieve generally interpretable results.

R sations For Al ive A I

The ANOV A approach provides convenient summative statistics about the relative size of convergent
validity, discriminant validity, and method effects. There are, however, important limitations that apparently
undermine its usefulness. The effects in the ANOV A model bear only a tangential relation to the typical meaning of
discriminant validity, method effects, and particularly convergent validity. Also, this approach offers very little
formative information about the effectiveness of particular traits, methods, or trait-method units. A serious limitation
to the ANOVA model is that, like the Campbell-Fiske guidelines, it is based upon inferences about measured
variables instead of latent traits. Because whatever advantages there are to this approach are apparently served more
effective/y by the CCA model, the ANOVA approach is not recommended.

The CFA approach is the most widely used latent variable approach to the evaluation of MTMM data. The
comparison of different models and the comparison of parameter estimates in models reflecting trait and method
effects provides clear evidence about convergent validity, discriminant validity, and method cffects. A major
limitation of this approach has been its reliance on the CFA-CTCM model that typically results in improper solutions.
Furthermore, even when the CFA-CTCM does result in a technically proper solution, the solution may be sufficiently
unstable that parameter estimates should be evaluated cautiously in relation to potentially large standard errors.
Results summarized here, consistent with a large body of additional research (¢.g., Marsh, 1989; Marsh & Bailey,
1991; Kenny & Kashy, in press), indicates that the problem of improper and unstable solutions is largely overcome
through the application of the CFA-CTCU model. We recommend that at least the subset of CFA models considered
here should be applied in all MTMM studies, but that the major emphasis should be placed on only those models that
result in proper solutions. The preferred model within this set will depend on which models result in proper solutions
and ability of the alternative models to fit the data, but a growing body of experience suggests that the CFA-CTCU
model is the strongest modei in the CFA approach.

The CCA approach, like the ANOVA approach, provides convenient summative statistics for effects that we
have interpreted to correspond to reflect convergent validity, discriminant validly, and method ¢ffects. The important
advantage of the CCA approach over the ANOVA approach is that inferences are based on relations among latent
variables instead of measured variables. Nevertheless, other problems identified with the ANOVA mode! are also
evident in the CCA model. These include an apparent ambiguity in how CCA parameter estimates relate to
terminology typically used in MTMM studies, a lack of formative information about the performance of specific
traits, methods, and trait-method units, and a sensitivity to the orientation of the traits. In addition, there is apparently
no clear resolution on how best to combine the variance components associated with trait contrasts and those

associated with method contrasts. Because of these apparent limitations, we do not recommend the routine
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application of the CCA modcl for general use. It is possible, however, that further development of the approach
along the lines proposed by Wothke (1987) and by Kenny and Kashy (in press) may overcome these limitations and
provide a more generally useful approach.

The CDP model offers a mathematically elegant and parsimonious model of MTMM data. Whereas it has
not been applied as widely as other latent variable approacies -- particularly the CFA approach -- results summarized
here and those described in earlier research (e.g., Bagozzi & Yi, 1990; Browne, 1984, 1989; Cudeck, 1989) suggest
that it typically results in proper solutions. Consistent with Browne's claim, the CDP model provides clear evidence
about the Campbell-Fiske guidelines and about convergent and discriminant validity as embodied in these guidelines.
The CDP mode! also provides parameter estimates that are typically consistent with those observed in the MTMM
matrices. Therefore, subject to the continued demonstration of its success, we recommend that the CDP model should
be used in MTMM studies.

Even though we endorse the continucd use of the CDP model, we do so with some misgiving. Its parsimony
is achieved at the expense of implicit assumptions that we find worrisome such as: (a) the convergent validities for all
the different traits are equal (i.e., r(TiM1, TiM2) = (M1, M2) for all values of i); (b) the size of method effects is the
same for different traits (i.e., r(TiMr, TjMs)/r(TiMr,TjMr) = r(Ti,Tj) x r(Mr,Ms)/ r(Ti,Tj) = r (Mr,Ms) for all values of
i and j); and (c) the size of correlations among traits is the same for all methods (i.e., XTiMr, TjMr) = r(Ti,Tj) for all
values of r). Pt correlations typically reflect the pattern of correlations among traits in the MTMM matrix, but only if
this pattem is consistent across methods. Pm correlations typically reflect the extent of agreement between different
methods, but only if the agreement is consistent across all traits, Whereas the overall fit of the model provides an
indirect test of these assumptions, common sense suggests that they will typically be fa'se so that a more detailed
evaluation of the implications of violating these assumptions is needed in actual applications of the CDP model. Also,
because of these implicit invariance constraints, the CDP model does not provide a very useful formative evaluation
of specific trait-method units.

We also have some broader, philosophical concemns about the CDP model. The model, at least as applied to
MTMM data, is apparently based on an uncritical acceptance of the original Campbell-Fiske guidelines. Thus, for
example, Browne (1989) noted that "Campbell & Fiske (1959) listed four requirements for multitrait-multimethod
correlation matrices that have become generally accepted. We shall be concerned with the investigation of these
requirements” (p. xx). Whereas we agree that the heuristic value and intent of the Campbell-Fiske guidelines is
widely endorsed, we do not concur that their literal translation as "requirements” as émbodied in the CDP model is
widely accepted. Indeed, it is the many problems and potential ambiguities in the guidelines that has spuwned so
many alternative approaches. Whereas the application of the CDP approach certainly provides an objectivity o
evaluating the Campbell-Fiske guidelines, it is not clear that the CDP model eliminates widely recognized
ambiguities in the interpretation of the Campbell-Fiske guidelines. Furthermore, if the underlying assumption of a
multiplicative relation between traiis and methods is taken litcrally, then the logic of the Campbell-Fiske guidelines
and even the logic of the classical approach to test theory appears to be problematic. Whereas Browne (1984) has not
claimed that support the CDP model nccessarily leads 10 such dire consequences, we nevertheless find paradoxical
the assumption that support for the CDP impiies a multiplicative relation between latent traits and latent methods and
provides a basis for evaluating the Campbell-Fiske guidelines that appear to be bases on an assumption of additivity
that is invalidated by this multiplicative relationship. More generally, we are loath to relinquish the many conceptual
and theoretical advantages in the additive assumption of variance components explicit in classical test theory and
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conventional factor analysis that would have to be abandoned if such a multiplicative model were taken literally (see
Campbell & O'Connell, 1967; 1982).
Comparison of the CFA and CDP Approaches

We have recommended the continued use of the CFA and CDP models, and so it is relevant to contrast the
two approaches. Both the CDP and at least the CFA-CTCU models typically result in proper solutions. Consistent
with Bagozzi and Yi (1990)2 , we found that CFA models fit real data better than the CDP model. Previous research,
however, should be evaluated cautiously because all prior comparisons of the CDP and CFA approaches apparently
were based on the CFA-CTCM that is known to be prone to improper and unstable solutions. Thus, for example, the
improper CFA-CTCM solution with the Kelly-Fiske data and with the Lawler data have been used to argue for the
superiority of both the CCA and CDP approaches over the CFA approach, but the CFA-CTCU solution is proper for
both these examples. Nevertheless, because the CDP niodel is not nested under any of the CFA models3, it is be
possible to construct a MTMM matrix that is better fit by the CDP mode! than any of the CFA models. Thus, fit in
this narrowly defined sense can never be used to demonstrate the absolute superiority of either approach. Also, the
typically better fit of the CFA models is at the expense of estimating considerably more parameters. Whereas the
TLI and Ck penalize for a lack of model parsimony, a sufficiently extreme penalty for lack of parsimony would lead
to favoring the CDP model over the CFA modcis even for the data considered Lere. In summary, a limited amount of
research suggests that CFA models are typically able to fit real data better than CDP models, but only at the expense
of considerable parsimony.

1t is also useful to compare the interpretations of the CFA models (in Appendix 2) and the CDP models (in
Appendix 4) more closely. In terms of superficial support for convergent and discriminant validity, the two
approaches resulted in comparable results for all five data sets considered here. Support for convergent and
discriminant validity were strong for the Byrne, the YIT, and -- to a lesser ¢xtent -- the Kelly and Fiske data. Both
approaches indicated good support for convergent validity but no support for discriminant validity with the Ireland
data. For the Lawler data both approaches offered mixed support for convergent validity, although support for
discriminant validity appeared to be stronger for the CFA approach than the CDP approach. Even this apparent
difference with the Lawler data is easily explained. Estimated trait correlations for the two approaches are very
similar and consistently less than 1.0, According to criteria for discriminant validity in the CFA model these results
constitute support for discriminant validity whereas the CDP approach -- based on the original Campbell-Fiske
guidelines -- further requires that Pt correlations are larger than Pm correlations.

While admiring the parsimony of the CDP model, it must also be recognized that this parsimony undermines
much of the heuristic value of the MTMM paradigm as a formative tool. To illustrate this concern we note that there
are specific features evident in the MTMM tiatrices that are reflected in the CFA solutions but not the CDP solutions.

1. in the Byme data, . 2rrelations among traits are systematically lower for M1 and systematically higher for
M3. This pattem is clearly evidert in the sizes of correlated uniquenesses associated with each method in the CFA-
CTCU model (Appendix 2) but apparently not in the CDP model (Appendix 4). Also, convergent validities in the
Byme data are consistently targer for T3. This is reflected in the higher trait factor loadings associated with T3 in the
CFA-CTCU model (Appendix 2) but not in the CDP model (Appendix 4).

2. In the Lawler data, convergent validitics associated with M3 (self-ratings) are low for all traits, but clcarly
larger for T3 (.30 and .30) than for T1 (.01 and .01) and T2 (.13 and .09). In the CFA-CTCU model this is evident ir:
the statistically significant trait factor loading for T3M3 (.349) compared to the nonsignificant trait factor loadings for
T1M3 (.095) and T2M3 (.126), but not in the CDP model.
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3. For the YIT data, convergent validities associated with T4 are consistently smaller. This is reflected in the
trait factor loadings in the CFA models (Appendix 2) but not the CDP model. Convergent validities associated with
M2 are higher than those associated with M3 which are higher than those associated with M1. This observation is
readily apparent in the Pm correlations for the CDP model (Appendix 4), but are also evident -- perhaps less
obviously -- by noting differences in trait factor loadings associated with traits measured at M1, M2 and M3
(Appendix 2).

4, For the Kelly and Fiske data, convergent validities are consistently largest for T! and lowest for T4,
These patterns are evident in the CFA results (Appendix 2; except, perhaps, for the anomalous trait factor loading for
T4M1) but not in the CDP solution (Appendix 4).

These more detailed comparisons of CFA and CDP solutions often revealed potentially important nuances in
the data that were captured by the CFA approach but not the CDP approach. In order to illustrate this condition more
clearly, we constructed an artificial MTMM matrix from a CFA-CTUM model (see Appendix 5) in which there were
small method effects, small to moderate trait correlations, substantial trait variance for T1 and T2, and only weak
trait variance for T3. Consistent with this design of the data, convergent validities were large for T1 and T2 (.56 to
.72) but small for T3 (.09 to .15). This data should be troublesome for the CDP model that requires all convergent
validities associated with a given method to be the same. Based on a hypothetical N=500, the CDP model provided
an excellent fit to this artificial data (X2 (21) = 11.15). Parameter estimates for the CDP model reflected trait
correlations with a reasonable accuracy but not the large differences in convergent validities for the three traits,
Furthermore, the Pm correlations -- the convergent validities -- which were all greater than .9 appear to be grossly
inflated in relation to the observed convergent validities and the population model used to gencrate the data --
particularly given that T3 was so weak. This apparent misrepresentation of the data is particularly troublesome given
the extremely good fit of the CDP model. This example, even more than the results of the 5 real data sets,
demonstrates that it is important to critically evaluate parameter estimates based on different latent trait models in
relation to each other and in relation to the original MTMM matrix,

In summary, this investigation has an important message for applied researchers who wish to use the
MTMM paradigm. MTMM data has an inherently complicated structure that will not te fully described in all cases
by any of the models or approaches considered here. There is, apparently, no "right” way to analyze MTMM data
that works in all situations. Instead, we recommend that researchers consider several alternative approaches to
evaluating MTMM data -- an initial inspection of the MTMM matrix using the Campbell-Fiske guidelines followed
by fitting at least the subset of CFA models in Figure 1 and the CDP model. The Campbell-Fiske guidelines should
be used primarily for formative purposes, the CDP scems most appropriate primarily as a summative tool, and the
CFA models apparently serve both summative and formative purposes. It is, however, important that researchers
understand the strengths and weaknesscs of the diffcrent approaches. Despite the inherent complexiiy of MTMM
data, we feel cunfident that the combination of common sense, a stronger theoretical emphasis to the design of
MTMM studies, a stronger emphasis on the quality of measurement at the level of trait-method units, an appropriate
arsenal of analytical tools such as recommended here, and a growing understanding of these analytic tools will allow
researchers to use effectively the MTMM paradigm.
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FOOTNOTES

1 -- Actually, the determinant of a variance/covariance matrix is the product of the variance components only if the
covariance terms are zero so that the matrix is diagonal. In the block diagonal CCA model covariance terms
involving the general factor and those relating trait contrast factors to method contrast factors are zero, but
covariances among the trait contrast factors and amcag the method contrast factors are freely estimated. Using the
Kelly and Fiske data, Wothke (1987) demonstrated that the orthogonalization of the submatrices involving trait
contrast factors and method contrast factors could be accomplished by an eigenvalue decomposition like that
typically conducted in principal components analysis.

2 -- It should be noted that comparisons with the Bagozzi and Yi (1990) results should be qualified in that: (a) they
reported results for only the version of the CDP model in which the error structure was required to have a direct
product structure -- a model that is more restrictive than the CDP model applied here and apparently inappropriate in
some situations; (b) they did not consider the CFA-CTCU model emphasized here and relied primarily on the CFA-
CTCM model; (c) consistent with results presented here and elsewhere, at least some of their CFA-CTCM solutions
were technically improper (Bagozzi & Yi, 1990, p. 553).

3 -- Our emphasis has been on the differences between the CDP and CFA models. In general the two models are not
equivalent, but it is possible for the two models to provide equivalent solutions in special circumstances. To illustrate
this point, we generated a MTMM matrix that was the Kronecker product of a 3x3 Pm matrix in which all off-
diagonal values were .8 and a 3x3 Pt in which all off-diagonals were .3. The CDP model, of course, provided a
perfect fit for this simulated data and captured the original Pm and Pt correlations, The CFA-CTCU model, however,
also fit the data perfectly as did the CFA-CTUM and CCA models (see Browne, 1984, 1989 for a mathematical
derivation of the conditions under which the these models result in equivalent solutions). In the CFA-CTCU model
all the squared trait-factor loadings were .8 (the off-diagonals in Pm that reflect convergent validity), whereas all the
trait correlations and correlations among uniquenesces vrere .3'(the off-diagonals in the Pt matrix thit reflect both
trait effects and method effects). For other simulated data sets constructed from Pm and Pt matrices that did not have
equal off-diagonal values, the CFA and CCA models were not able to perfectly fit the data demonstrating that there
will be circumstances in which the CDP model is able to fit the data better than the other models.
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Figure 1. Four Confirmatory Factor Analysis (CFA) Models For a 4 Trait (T) x 4 Method (M) Design. Each of
the 16 measured variables (TIM1, T2M1, ..., T4M4) is represented by a single measured variable (the boxes) and
latent trait factors (T1-T4) and method factors (M1-M4) arc represented as ovals.
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Table 1
Summary of two manifest variable approaches: The Campbell-Fiske guidelines and variance components from the ANOVA model

Traditional Campbell-i'iske Guidelines ANOVA Variance Components
Criterion 1 Criterion 2 Criterion 3 Criterion 4
Design Convergent rs HTHM rs HTMM rs Pattarn rs

Study T M Mn Min Max Crit 1 Mn Min Max Czit 2 Mn Min Max Crit 3 Mn Min Max Conv Disc Meth Error

Byrue 3 3 .70 .54 .87 9/9 .29 .01 .51 36/36 .35 .00 .58 33/36 .66 .66 .67 .45 .41 .06 .24
Lawler 3 3 .28 .01 .65 5/9 .16 .01 .42 28/36 .45 .14 .56 10/36 .65 .63 .66 .29 .13 .29 .43
Kelly 5 3 .36 .14 .71 14/15 .13 -,11 .41 111/120 .16 -.19 .46 97/120 .72 .50 .83 .19 .23 .03 .61
YIT 5 3 .52 .36 .63 15/15 .13 .00 .30 120/120 .17 .01 .40 119/120 .69 .41 .88 .22 .39 .04 .44
Ireland 5 3 .62 .43 .72 15/15 .59 .36 .74 88/120 .79 .49 .91 4/120 .51 .33 .65 .67 .03 .21 .18

Note. HTHM = Heterotrait-heteromethod correlations. HTMM = Heterotrait-monomethod correlaticns. The ANOVA variance components represent convergent

validity, discriminant validity, method effects, and residual error respectively.
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Table 2
Goodness of Fit of Alternative MIMM Models For Five Data Sets

Byrne (T=3, Mu), N=817) Zavler (T=3, =3, Ne=113) YIT (T=S, M=3, Nw1200} Kelly & Fiske (T=5, 23, Nel24) Ireland (TwS, MN=3, W=139)

Model Proper X2 df $II WNI K Proper X2 df TLI NI CK Proper X2 df ZLI RNI CK Proper X2 df FLI NN CK Proper X2 df TILI WI CX
mall -—= 5310 36 .000 .000 6.522 --- 348 36 .000 .000 3.258 ~--- 5913 105 .000 .000 4.953 --- 545 105 ,000 .000 4.674 --- 2680 105 .000 .000 19.524
CTa-c? Yes 452 24 .87 .819 .605 Yes 101 24 .630 .754 1.305 Yas 510 00 .903 .926 .493 Yes 140 08¢ .020 .063 1.080 No 724 00 .47F .750 5.070

CYA-CTUM o 76 15 .971 .9880 .170 No 20 15 .961 .904 .765 Yes 143 65 .978 987 .212 Yes 76 65 .959 .975 1.642 Yes 123 65 .964 .977 1.707
CTA-CTCM o 33 12 .98 .9% .123 Mo S 12 1.070 1.023 .680 Yes 123 62 .962 ,909 .201 Mo 57 62 1.017 1.010 1.547 Mo 37 62 .977 .96 1l1.648
CTA-CTCU Yes 78 15 .97 .908 .170 Yes 20 15 .962 .%84 .765 Yas 79 S0 .990 .995 .104 Yes 68 50 .926 .960 1.053 Yes €4 50 .980 .99¢ 1.614

CCA Yes 177 21 .949 .970 .276 Yes 29 21 .955 .974 .729 Yes 319 17 .943 950 .330 Yes 105 77 .914 .937 1.648 Wo 1580 77 .957 .968 1.045
cor mo 172 21 .951 .971 .270 Yes 29 21 .957 .975 .726 Yes 149 77 .983 .988 .196 Yes 116 77 .879 .912 1.730 Yes 173 084 .9¢9 .963 1.949
coP-Ke® Yes 249 25 .939 .958 .354

cca-piag® Yos 145 77 .964 .974 1.745

Note. TLI = Tucker-lewis Index, RNI = Relative noncentrality index, Ck = Cross-validition index. See Figure 1 for a description of the models.
2 The Composite Direct Product Model with Kronecker Errors (CDP-KE) Model was fit to the Byrne data because the CDP model resulted in an improper solution

for the Byrne data. b The Covariance components analysis completely diagonal model (CCA-Diag) was fit because the CCA model resulted in an izproper
solution for the Ireland data.
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Appendix 1

Five MTMM correlation matrices used in this study.

Byrne data (3Tx3M)
tilml (.89)
t2ml .384 (.79)
t3ml .441 .002 (.92)
tlm2 .662 ,368 .353 (.84)
t2m2 .438 .703 .008 .441 (.89)
t3m2 .465 ,069 .871 .424 .136 (.95)
tlm3 .678 .331 .478 .550 .380 .513 (.87)
t2m3 .458 .541 .057 .381 .658 .096 .584 (.90)
t3m3 .414 .027 .825 .372 ,029 .810 .582 .135 (.94)

Lawler data (3tx3m)

timl 1.00

t2ml .53 1.00

t3ml .56 .44 1.00

tim2 .65 .38 .40 1.00

t2m2 .42 .52 .30 .56 1.00

t3m2 .40 .31 .53 .56 .40 1.00

tlm3 .01 .01 .09 .01 .17 .10 1.00

t2m3 .03 .13 .03 .04 .09 .02 .43 1.00

t3m3 .06 .01 .30 .02 .01 .30 .40 .14 1.00

Youth In Transition (YIT) data (5Tx3M)

tilml 1.000

t2ml .162 1.000

t3ml .212 ,085 1.000

t4ml .256 .119 .401 1.000

t5ml .292 ,015 .054 .135 1.000

tlm2 .525 ,137 .120 .216 .231 1.000

t2m2 .163 .588 .088 .144 .04} ,153 1.000

t3m2 .136 .050 .488 .215 ,020 .206 .058 1.000

t4m2 ,186 .109 ,213 ,444 .098 .299 ,104 .283 1.000

t5m2 ,226 ,022 .044 .102 .567 .346 .050 .076 .144 1.000

tlm3 ,483 .123 .,103 .181 .192 ,633 .126 .162 .244 .278 1.000

t2m3 .141 ,502 .156 .157 ,000 .128 .549 .099 .096 .027 .097 1.000

t3m3 .094 .046 .416 .158 ,045 .145 ,006 .610 .208 .051 .195 .027 1.000

t4m3 ,.120 .076 .170 .365 .097 .236 ,065 .229 ,507 .091 .303 .080 .287 1.000
t5m3 ,231 .068 ,050 .151 .505 ,296 .107 .043 .163 .632 .,398 .071 .054 .149 1.000

« 40
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App>~dix 1 (continued)

Five MTMM correlation matrices used in this study.

KE:.LY and FISKE data (5Tx3M)

timl 1

t2m:i 371

t3ml  -.24 -.14 1

t4ml .25 .46 .08 1

t5ml .35 .19 .09 .311

tlm2 .71 .35 -.18 .26 .41 1

t2me .29 .53 -.15 .38 .29 .371

tam2 -,27 -,31 .43 -.06 .03 -.15 -.191

t4m2 .03 -.Uu5 .03 .20 .07 .11 .23 .191

t5m2 .19 .05 .04 .29 .47 .33 .22 .19 .291

tim3 .48 .31 -.22 .19 .12 .46 .36 -.15 .12 .231

t2m3 .17 .42 -.10 .10 -.03 .09 .24 -.25 -.11 -.03 .23 1

:3m3 -.04 -.13 .22 -.13 -.05 --04 -,112 .31 .06 .06 -.05 -.12 1

£4n3 .13 .27 -.03 .22 -.04 .10 .15 .00 .14 -.03 .16 .26 .1l11
t5m3 .37 .15 -,22 .09 .26 .27 .12 -.07 .05 .35 .21 .15 .17 .311

Ireland data (5Tx3M)

tlml 1,000

t2ml .86 1.000

t3ml .86 .85 1.000

t4ml .80 .81 .89 1.000

t5ml .85 .84 ,91 ,90 1,000

tim2 .69 .65 .65 .63 .66 1.000

t2m2 .68 .67 .65 .63 .66 .81 1.000

t3m2 .71 .68 .72 ,70 .74 .75 .77 1.000

t4m2 .€6 .63 .69 .69 .66 .76 .81 .83 1.000

t5m2 .69 .68 .70 .67 .71 .84 .86 .B4 .88 1.000

t1lm3 .60 .52 .56 .56 .61 .63 .54 .58 .55 .59 1.000

t2m3 .58 .60 .55 .54 .61 .45 .37 .51 .48 .52 .63 1.000

t3m3 .63 .62 .61 .57 .63 .55 ,55 .63 .54 .56 .68 .72 1.000
t4m3 .53 .56 .50 .53 .54 .36 .45 .48 .43 .42 .49 .74 .76 1.000
t5m3 .60 .61 .57 .57 .60 .52 .55 .61 .55 .57 .71 .73 .88 .77 1.000
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Appendix 2
Parameter Estimates From the Best Fitting Confirmatory Factor Analysis (CFA) Models

Byrne Data (CFA-CTCU)
Trait unique SMC Unique. Correlations

Factor

TIM1 .869* .246* .754 1.000

T2M1 .775*% .394* 604 -.119* 1,000

T3M1 .942* .113* .887 -.019 ~.114* 1.000
T1M2 .731* .463* ,535 1.000

T2M2 .B63* ,228* ,765 .130* 1,000

T3M2 .930* .142* ,859 .125% ,499* 1,000
T1M3 ,754* ,399* 588 1.000

T2M3 ,755* .450* ,558 .537* 1.000

T3M3 .847* .242* ,748 .423% ,214* 1.000
Trait Correlations

T1 1.000

T2 .604* 1.000
T3 .596* .042 1.000

Lawler Data: CFA-CTCU
Trait unique SMC Unique. Correlations
Factor ‘
TiM1 .868* ,240 .759 1,000
T2M1 .761* .414* ,583 .251 1,000

T3M1 .781% .390* .610 .341 .268 1.000
TIM2 .730* .454* .540 1.000
T2M2 .672* .544* .454 .428*% 1.000

T3M2 ,691* .519*% .479 .449* ,263* 1,000

TIM3 .095 1.003* .009 1.000

T2M3 .126 .982* .016 .427* 1.000

T3M3 .349* ,8)9* ,123 .407* ,154 1.000
Trait Correlations

T1 1.000

T2 .680* 1,000

T3 .652* ,532* 1,000

AD
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Appendix 2 (continued)
Parameter Estimates From the Best Fitting Confirmatory Factor Analysis (CFA) Models

YIT data: CFA-CTCU

Trait unique SMC Unique. Correlations

Factor
TIM1 .639* ,596* ,406 1.000
T2M1 .735* .459*% ,541 ,051 1.000
T3M1 .579% ,662* ,336 .193* -,008 1,000
T4M1 ,572* ,668* ,329 177 -.014 .3F8* 1,000
T5M1 .674* ,546% .454 ,210* ~,006 040 .073 1.000
T1M2 .833* .307* ,693 1.000
T2M2 ,797* .364* ,636 -,002 1,000
T3M2 .846% .286% .714 .089 .038 1.000
T4M2 ,772* ,403* ,597 ,067 ~,011 .031 1.000
T5M2 .837* ,302* ,699 ,129* ~,040 .121* ,041 1.000
TIM3 ,755* ,425* .573 1.000
T2M3 ,682* ,530* ,467 -.,036 1,000
T3M3 .724* .481% ,521 .150* ~,080 1.000
T4M3 .653* ,578% .425 ,215% .004* ,197% 1,000
T5M3 ,.760* ,425* .576 ,315% .030* ,006 ,049 1,000
Trait Correlations
T1 1.000
T2 .232* 1.000
T3 .247* .104* 1.00 O
T4 ,413% ,194* ,420 * 1.000
TS5 .438* .,087% ,067 * ,222* 1,000

YIT: CFA-CTCM
Trait Method Unique SMC
Factor Factor
T1MI .751% ,224% ,380* .618
T2M1 ,737* -,013 .,458* ,543
T3M1 .575% ,519* ,400* ,600
T4M1 .561* ,497% ,431*% ,566
T5M1 .706% ,077% ,494* ,505
T1M2 .687* ,538* ,251* ,752
T2M2 ,798* ,010 .362* ,638
T3M2 .820* ,187% ,296* ,705
T4M2 ,734% ,225% ,408* .591
T5M2 ,.798* ,263% ,296* .705
T1M3 ,633* ,687* ,142* .860
T2M3 .686* -.004 ,530*% ,470
T3M3 .723% ,183% ,447* ,554
T4M3 ,631% ,269* .527* .472
T5M3 ,731* ,321* .370* .638
Trait factor Correlations
Tl 1.000
T2 .255* 1,000
73 .192% ,100* 1.000
T4 .332%  ,195% ,409* 1,000
T5 .404* ,082* ,038 ,175% 1,000
Method factor Correlations
M1 1,000
M2 .178*% 1,000
M3 .116 .,571*% 1,000
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Appendix 2 (continued)
Parameter Estimates Frcm the Best Fit.ing Confirmatory Factor Analysis (CFA) Models

Kelly and Fiske Data: CFA-CTUM
Trait Method Unique SMC
Factor PFactor

T1M1 .857* -,023 .264* . 736
T2M1 .827* .090 .305% .694
T3M1 .560* ,712*% ,184* .817
T4M1 .933* .201 .087* .913
THM1 .695* .214 .492% .518
T1M2 .830* .137 2977 . 704
T2M2 .696* ,320* ,454* .563
T3M2 .743* .249* ,357* .632
T4M2 .185*% .642*% .547* .449
TSM2 .646* .365*% ,428* .562
T1M3 .551* ,105 .681* .316
T2M3 .421* .261* .743* .248
T3M3 .419* ,295*% _755* .258
T4M3 .301* ,591* ,592* . 426
T5M3 .556* .570% ,420* .602
Trait factor Correlations

T1 1.000

T2 .568* 1.000

T3 -.368* -,487* 1,000

T4 .339% .547* -,120 1.000
75 .562% ,263* -.007 .411* 1.000

Kelly and Fiske Data: CFA-CTCU
Trait unique SMC Unique. Correlations
Factor

T1M1 .876* .230* .770 1.00

T2M1 .827* .318* ,682 -.161 1.00

T3M1 .584% .663* .340 -.027 .153 1.000

T4M1 .921* .150 .849 -.148 .256 .481* 1,000

T5M1 .690* .541* ,468---,041 ~-,.014 .265 .119 1.000
T1M2 .827* .338* .669 1.000

T2M2 .705*% .550* .475 .062 1.00

T3M2 .704* .467* .515 .170 .111 1.000

T4M2 .188 .956* .036 .141 .318%  ,229* 1.000

T5M2 .626* .585* .401 221 .199 .245 .304* 1.000
T1M3 .556* .696* .308 1.000

T2M3 .410* .815* ,171 .137 1.000

T3M3 .420* .842* .173 .012 -.038 1.000

T4M3 .300* .943* ,087 .099 .223*  ,171 1.000

T5M3 .558% .733* .298 .031 .169 .277*  ,392* 1.000
Trait factor Correlations

T1 1.000

T2 .591* 1,000

T3 -.391* -.475*% 1.000

T4 .,354* ,522* -,134 1.000

T5 .554*% ,289* -,056 .425* 1,600
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Appendix 2 (continued)
Parameter Estimates From the Best Fitting Confirmatory Factor Analysis (CFA) Models

Ireland Data: CFA-CTCU
Trait unique. SMC Unique. Correlations
Factor

T1M1 ,861* .252* .747 1.000*

T2M1 ,835% ,290* .706 .600% 1,000

T3M1 .835% ,291* .706 .588* ,596* 1,000

T4M1 .843% _274* 722 .423*%  _490* ,694* 1,000

T5M1 ,868* ,238* .760 .473*% ,454*% ,687* ,738*% 1,000
TiM2 .801* ,360* .640 1,000

T2M2 .799* ,372* .632 .570* 1,000

T3M2 .853% ,274* 727 .320* ,411* 1,000

T4M2 .801* .367* .636 .475% ,611*% ,551* 1,000

T5M2 .819* ,338* .665 .617% ,646 .505% ,741* 1,000
T1M3 .728* .478* .526 1.000

T2M3 .690* ,517* .480 .362* 1,000

T3M3 .739*% ,464* .541 .360* ,502*% 1,000

T4M3 .616*% ,632% .375 .153*  ,595* ,623* 1,000

TS5M3 .713% ,498* .505 .456* ,499* ,761* ,618* 1.000
Trait Factor Correlations

Tl 1.000

T2 .948* 1.000

T3 .960* .948* 1.000

T4 .928* ,932* ,963* 1,000

TS5 .964* ,978* ,991* ,960* 1,000

Ireland Data: CFA-CTUM
Trait Method Unique SMC
Factor Factor

T1M1 .864* .329* ,138* ,861
T2M1 .836* .363* .160* .838
T3M1 .837* ,468* .072* .928
T4M1 .837* .434% ,098* ,901
T5M1 .860* .407* .086* .914
T1M2 .801* ,403* .201* ,800
T2M2 .807* .454* ,153* .B49
T3M2 .862* ,288* ,179* ,822
T4M2 .819* .470* ,124* ,878
T5M2 .728% .508*% ,069* ,932
TIM3 .713* .297* .400* .599
T2M3 .683* ,449* ,322* ,675
T3M3 .735% ,588* .122* .879
T4M3 .608* .586* ,295* ,707
T5M3 .714*% .616* .114* ,887
Trait factor correlations

Tl 1.000

T2 .965* 1,000

T3 .958*% ,942* 1,000*

T4 .912* ,929% ,967* 1,000
TS5 .964*% ,964* .988*% ,969*% 1,000

Note. CFA results are summarized for the best models for each data set. Each measured variable is
a trait-method unit. TI1M1l, for example, is trait 1 measured by method 1. The squared multiple
correlations (SMC) are an estimate of the communality for each measured variable.

*p < .05
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Appendix 3
Paresmeter Estimates For the Covariance Components Analysis (CCA) Models

Byrne Duta

Variance/covariances

GEN 1.000

TCl1 0 .074~

TC2 0 .024 .589*

MCl c © 0 .022*

MCl 0 O 0 .017*% .069*

Squared multiple correlations
T1M1 T2M1 T3M1 T1M2 T2M2 T3M3 T1M3 T2M2 T3M3
.730 .601 .881 ,565 .831 .905 .849 .722 .826

iawler data

Variance/covariances

GENM 1.000

™1l 0 .102*

TCc2 0 .016 .246*

MCl 0 0 0 .282%

MC1 0 0 0 «271% ,579*

Squared multiple correlations
TiM1 T2M1 T3M1 T1M2 T2M2 T3M3 TIM3 T2M2 T3M3
.810 .626 .672 .821 .618 .664 .563 .270 .399

YIT data

Variance/covariances

GEN 1.000

TC1l 0 .205*

TC2 0 =-.070* .661*

TC3 0 -.062* -.027 .380*

TC4 0 -.036* .037 .147* ,365*

MC1 0 0 0 0 0 .105*

MC2 0 0 0 0 0 .020* .051*

Squared multiple correlations
T1M1 T2M1 T3M1 T4M1 T5M1 T1M1 T2M1 T3M1 T4M1 T5M1 T1M1 T2M1 T3M1 T4M1 T5M1
.535 .516 .438 .455 .507 .704 .653 .712 .586 .709 .710 .446 .571 .504 .640

Kelly and Fiske data (T3 negatively oriented)
Variance/covariances

GEN 1.0

T7c1 .0 .670*

TC2 .0 .387* . 793*

TC3 .0 -.639* -.B21* 1.2844*

T4 .0 =-.087 .107 .020 .169*
MCl .0 0 0 0 0 .126*
M2 .0 0 0 0 0 .100* .360*

Squared mul-iple correlations
T1M1 T2M1 T3M1 T4M1 T5M1 T1M1 T2M1 T3M1 T4M1 T5M1 TIM. T2M1 T3M1 T4M1 TS5M1
.735 .667 .370 .589 .467 .738 .535 ,591 .166 .566 .263 .276 .201 .449 ,648

AL
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Appendix 3 (continued)
Parameter Estimates For the Covariance Components Ana''sis (CCA) Models

Kelly and Fiske data (T3 reflected so as to be positively oriented)
Variance/covariances

GEN 1.0

TCl .0 142+

TC2 .0 -.008 .101*

Tc3 .0 -.045 .006 .790*

TC4 .0 -,067* .086* .094 .204*

Mcl .0 0 0 0 0 .022

Mc2 .0 0 0 0 0 .046 .115*
Squared multiple correlations

T1M1 T2M1 T3M1 T4M1 T5M1 T1sl T2M1 T3M1 T#M1 T5M1 T1M1 T2M1 T3M1 T4M1 TSM1
.704 .692 .278 ,519 ,44¢ 727 .461 .678 .069 .473 .398 .311 .107 .228 .310

Ireland data: CCA (fully diagonal since block diagonal ill defined)

Variance/covariances

GEN 1.000

TCl 0 .013*

TC2 0 .000 .013*

TC3 0 .000 9 .002

TC4 0 .000 O .000 .003

MCl 0 .000 © .000 © .089*
0

Mc2 0 .000 .000 O .000 .139*
Squared multiple correlations
T1M1 T2M1 T3M1 T4M1 TS5M1 T1M1 T2M1 T3M1 T4M1 T5M1 TIM1 T2M1 T3M1 T4M1l TS5M1

.855 .841 .919 .873 .917 .799 .853 .792 .854 .927 .594 .689 .877 .686 .885

Note. CCA results are summarized as the variance/covariance matrix for the general (GEN) contrast
factor, the trait contrast (TCl, TC2,..) factors, and the method contrast (MCl, MC2, ...) factors.
The sguared multiple correlations (SMC) are an estimate of the communality for each measured
variable.

* p < .05
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Appendix 4
Parameter Estimates For the Composite Direct Product (CDP) Models

Byrne Data: CDP Model

Trait Corr Meth  Corrs
T1 1 Ml 1
T2 .683*% 1 M2 .955* 1

T3 .600% ,181* 1 M3 .851% ,814* 1
Squared multiple correlations
T1M1 T2M1 T3M1 T1M2 T2M2 T3M3 T1M3 T2M2 T3IM3
.756 .610 .889 ,.586€¢ .867 .933 .856 .851 (1.0)
Byrne Data: CDP-CE Model (because CDP solution was improper)

Trait Corr Method Corrs
T1 1 M1 1
T2 .694* 1 M2 .879% 1

T3 .604* .161* 1 M3 ,.853* ,840* 1
Squared multiple correlations

T1M1 T2M1 T3M1 T1M2 T2M2 T3M3 T1M3 T2M2 T3M3
.665 ,700 .896 .673 .707 .900 .850 .867 .961
Lawler data: CDP Model

Tralt correlations Metod correlations
T1 1.000 M1 L1.000
T2 .687* 1.000 M2 717 1.000

T3 .665* .520* 1,000 M3 .207* .190* 1,000
Squared multiple correlations

T1M1 T2M1 T3M1 T1M2 T2M2 T3M3 T1M3 T2M2 T3M3

.878 .710 .782 .,902 .724 .748 .802 .454 .541
YIT data: CDP Model

t Correlations Method Correlations
1,000 M1 1.0060

.123* 1,000 M2 .685% 1

W272% .026 1.000 M3 «579% ,782% 1

+396% .086* .471* 1 .000
.425* .036 .072% .179* 1 ,000
Squared multiple correlations
T1M1 T2M1 T3M1 T4M1 T5M1 T1M1 T2M1 T3M1 T4M1 T5M1 T1M1 T2M1 T3M1 T4M1 T5M1
.728 ,999 .779 .709 .830 .757 .699 .763 .631 .768 .B867 .687 .792 .644 .865
Kelly and Fiske Data: CDP Model

Trait correlations Method correlations
Tl 1.000 M1l 1.000
T2 .442* 1,000 M2 .796* 1.000

T3 -.171 -,212*% 1,000 M3 .579¢ .529% 1,000

T4 .295% .636% ,253* 1.000

T5 404~ .299*%  ,309* ,589* 1,000
Squared multiple correlations

T1M1 T2M1 T3M1 T4M1 TS5M1 T1M1 T2M1 T3M1 T4M1 TS5M1 T1M1 T2M1 T3M1 T4M1 TS5M1
.830 .724 .398 .667 .535 .830 .604 .787 .213 .710 .511 .426 .465 .515 .747
Ireland data: CDP model

Trait correlations Method correlations

Tl 1.00 M1 1.000

T2 .952* 1.000 M2 .767* 1.000

T3 ,935% ,932* 1,000 M3 .C73* ,652* 1.00

T4 .877* .917*% ,964* 1,000

TS .945* ,956* ,989* ,970* 1,000
Squared multiple correlations

TiM1 T2M1 T3M1 T4M1 TS5M1 T1M1 T2M1 T3M1 T4M1 T5M1 T1M1 T2M1 T3M1 T4M1 T5M1
.881 .851 .920 .913 .902 .814 .860 .798 .892 .914 ,¢03 .700 .885 .719 .878

Note. Each measured variable is a trait-method unit. TIMl, for example, is tralt 1 measured by
method 1. The squared multiple correlations (SMC) are an estimate of the communality for each
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Appendix 5

Simulated Data Used to Compare CFA and CDP Models
CFA-CTUM Model Used
To Generate the Data
TFL MFL TD
TIM1I .9 .1 .18
T2M1 .8 .1 .35
T3M1 .3 .3 .82

TiM? .8 .2 .32
T2M2 .8 .2 .32
TMZ2 .3 .3 .82
TIiM3 .7 .1 .50
T2M3 .7 .2 .47

T3M3 .5 .3 .66
Trait factor Correlations
T1 1.0
T2 .6 1.0
T3 .1 .11.0

Artificial MTMM Matrix
timl 1.000
t2ml .442 1.000
t3ml .057 .054 1.000
tilm2 .720 .384 .024 1.000
t2m2 .432 .640 .024 .424 1.000
t3m2 .027 .024 .090 .084 .084 1.000
tilm3 .630 .336 .021 .560 .336 .021 1.000
t2m3 .378 .560 .021 .336 .560 ,021 .314 1.000
t3m3 .045 .040 .150 .040 .040 .150 .065 .095 1.000

Artificial data: CDP Model

Trait Correlations Method Correlations
Tl 1.000 M1 1.000
T2 .597 1.000 M2 .934 1.000
T3 .160 .179 1.000 M3  .943 .904 1.000

Squared multiple correlations

T1M1 T2M1 T3M1 T1M2 T2M2 T3M3 TIM3 T2M2 T3M3

.832 .656 .098 .713 .714 ,117 .536 .538 .246
Note. The CFA-CTUM solution was used to generate the MTMM matrix that was then evaluated with the
CDP model. Even though the true trait variances for Tl and T2 differed substantially from T3,
apparently violating an assumption of the CDP model, the CDP model fit the data very well (X2 (21)
= 11,15 for a hypothetical N=500}.
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